Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 849-868
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space $(H,B,\nu )$. An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space $B$. Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur and Bromley Fresnel class $\mathcal F(B)$ and we finally investigate some Fubini theorems involving CFFT.
We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space $(H,B,\nu )$. An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space $B$. Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur and Bromley Fresnel class $\mathcal F(B)$ and we finally investigate some Fubini theorems involving CFFT.
DOI : 10.21136/CMJ.2023.0310-22
Classification : 28C20, 42B10, 46B09, 46G12
Keywords: abstract Wiener space; conditional Wiener integral; conditional Fourier-Feynman transform; Fubini theorem
@article{10_21136_CMJ_2023_0310_22,
     author = {Choi, Jae Gil and Shim, Sang Kil},
     title = {Conditional {Fourier-Feynman} transform given infinite dimensional conditioning function on abstract {Wiener} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {849--868},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0310-22},
     mrnumber = {4632861},
     zbl = {07729541},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0310-22/}
}
TY  - JOUR
AU  - Choi, Jae Gil
AU  - Shim, Sang Kil
TI  - Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 849
EP  - 868
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0310-22/
DO  - 10.21136/CMJ.2023.0310-22
LA  - en
ID  - 10_21136_CMJ_2023_0310_22
ER  - 
%0 Journal Article
%A Choi, Jae Gil
%A Shim, Sang Kil
%T Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space
%J Czechoslovak Mathematical Journal
%D 2023
%P 849-868
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0310-22/
%R 10.21136/CMJ.2023.0310-22
%G en
%F 10_21136_CMJ_2023_0310_22
Choi, Jae Gil; Shim, Sang Kil. Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 849-868. doi: 10.21136/CMJ.2023.0310-22

[1] Ahn, J. M., Chang, K. S., Kim, B. S., Yoo, I.: Fourier-Feynman transform, convolution product and first variation. Acta. Math. Hung. 100 (2003), 215-235. | DOI | MR | JFM

[2] Breiman, L.: Probability. Addison-Wesley Series in Statistics. Addison-Wesley, Reading (1968). | MR | JFM

[3] Brue, M. D.: A Functional Transform for Feynman Integrals Similar to the Fourier Transform: Ph. D. Thesis. University of Minnesota, Minneapolis (1972). | MR

[4] Cameron, R. H., Storvick, D. A.: An operator valued function space integral and a related integral equation. J. Math. Mech. 18 (1968), 517-552. | DOI | MR | JFM

[5] Cameron, R. H., Storvick, D. A.: An integral equation related to the Schrödinger equation with an application to integration in function space. Problems in Analysis Princeton University Press, Princeton (1970), 175-193. | DOI | MR | JFM

[6] Cameron, R. H., Storvick, D. A.: An operator-valued function-space integral applied to integrals of functions of class $L_1$. Proc. Lond. Math. Soc., Ser. III 27 (1973), 345-360. | DOI | MR | JFM

[7] Cameron, R. H., Storvick, D. A.: An operator valued function space integral applied to integrals of functions of class $L_2$. J. Math. Anal. Appl. 42 (1973), 330-372. | DOI | MR | JFM

[8] Cameron, R. H., Storvick, D. A.: An $L_2$ analytic Fourier-Feynman transform. Mich. Math. J. 23 (1976), 1-30. | DOI | MR | JFM

[9] Chang, K. S., Chang, J. S.: Evaluation of some conditional Wiener integrals. Bull. Korean Math. Soc. 21 (1984), 99-106. | MR | JFM

[10] Chang, K. S., Kim, B. S., Yoo, I.: Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space. Integral Transforms Spec. Funct. 10 (2000), 179-200. | DOI | MR | JFM

[11] Chang, K. S., Song, T. S., Yoo, I.: Analytic Fourier-Feynman transform and first variation on abstract Wiener space. J. Korean Math. Soc. 38 (2001), 485-501. | MR | JFM

[12] Chang, S. J., Park, C., Skoug, D.: Translation theorems for Fourier-Feynman transforms and conditional Fourier-Feynman transforms. Rocky Mt. J. Math. 30 (2000), 477-496. | DOI | MR | JFM

[13] Chung, D. M.: Scale-invariant measurability in abstract Wiener spaces. Pac. J. Math. 130 (1987), 27-40. | DOI | MR | JFM

[14] Chung, D. M., Kang, S. J.: Conditional Wiener integrals and an integral equation. J. Korean Math. Soc. 25 (1988), 37-52. | MR | JFM

[15] Chung, D. M., Kang, S. J.: Evaluation formulas for conditional abstract Wiener integrals. Stochastic Anal. Appl. 7 (1989), 125-144. | DOI | MR | JFM

[16] Chung, D. M., Kang, S. J.: Evaluation of some conditional abstract Wiener integrals. Bull. Korean Math. Soc. 26 (1989), 151-158. | MR | JFM

[17] Chung, D. M., Kang, S. J.: Evaluation formulas for conditional abstract Wiener integrals. II. J. Korean Math. Soc. 27 (1990), 137-144. | MR | JFM

[18] Chung, D. M., Park, C., Skoug, D.: Generalized Feynman integrals via conditional Feynman integrals. Mich. Math. J. 40 (1993), 377-391. | DOI | MR | JFM

[19] Chung, D. M., Skoug, D.: Conditional analytic Feynman integrals and a related Schrö-dinger integral equation. SIAM J. Math. Anal. 20 (1989), 950-965. | DOI | MR | JFM

[20] Cohn, D. L.: Measure Theory. Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäu-ser, New York (2013). | DOI | MR | JFM

[21] Doob, J. L.: Stochastic Processes. John Wiley, New York (1953). | MR | JFM

[22] Gross, L.: Abstract Wiener spaces. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Volume 2. Contributions to Probability Theory, Part 1 University of California Press, Berkeley (1967), 31-42. | MR | JFM

[23] Gross, L.: Potential theory on Hilbert space. J. Funct. Anal. 1 (1967), 123-181. | DOI | MR | JFM

[24] Huffman, T., Park, C., Skoug, D.: Analytic Fourier-Feynman transforms and convolution. Trans. Am. Math. Soc. 347 (1995), 661-673. | DOI | MR | JFM

[25] Huffman, T., Park, C., Skoug, D.: Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals. Mich. Math. J. 43 (1996), 247-261. | DOI | MR | JFM

[26] Huffman, T., Park, C., Skoug, D.: Convolution and Fourier-Feynman transforms. Rocky Mt. J. Math. 27 (1997), 827-841. | DOI | MR | JFM

[27] Huffman, T., Park, C., Skoug, D.: Generalized transforms and convolutions. Int. J. Math. Math. Sci. 20 (1997), 19-32. | DOI | MR | JFM

[28] Huffman, T., Skoug, D., Storvick, D.: Integration formulas involving Fourier-Feynman transforms via a Fubini theorem. J. Korean Math. Soc. 38 (2001), 421-435. | MR | JFM

[29] Johnson, G. W., Skoug, D. L.: The Cameron-Storvick function space integral: The $L_1$ theory. J. Math. Anal. Appl. 50 (1975), 647-667. | DOI | MR | JFM

[30] Johnson, G. W., Skoug, D. L.: The Cameron-Storvick function space integral: An $L(L_p, L_{p'})$ theory. Nagoya Math. J. 60 (1976), 93-137. | DOI | MR | JFM

[31] Johnson, G. W., Skoug, D. L.: An $L_p$ analytic Fourier-Feynman transform. Mich. Math. J. 26 (1979), 103-127. | DOI | MR | JFM

[32] Johnson, G. W., Skoug, D. L.: Notes on the Feynman integral. III: Schrödinger equation. Pac. J. Math. 105 (1983), 321-358. | DOI | MR | JFM

[33] Kac, M.: On distribution of certain Wiener integrals. Trans. Am. Math. Soc. 65 (1949), 1-13. | DOI | MR | JFM

[34] Kallianpur, G., Bromley, C.: Generalized Feynman integrals using analytic continuation in several complex variables. Stochastic Analysis and Applications Advances in Probability and Related Topics 7. Marcel Dekker, New York (1984), 217-267. | MR | JFM

[35] Kallianpur, G., Kannan, D., Karandikar, R. L.: Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces, and a Cameron-Martin formula. Ann. Inst. Henri Poincaré, Probab. Stat. 21 (1985), 323-361. | MR | JFM

[36] Kim, B. S., Yoo, I., Cho, D. H.: Fourier-Feynman transforms of unbounded functionals on abstract Wiener space. Cent. Eur. J. Math. 8 (2010), 616-632. | DOI | MR | JFM

[37] Kuo, H.-H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics 463. Springer, Berlin (1975). | DOI | MR | JFM

[38] Kuo, H.-H.: Introduction to Stochastic Integration. Universitext. Springer, New York (2006). | DOI | MR | JFM

[39] Paley, R. E. A. C., Wiener, N., Zygmund, A.: Notes on random functions. Math. Z. 37 (1933), 647-668. | DOI | MR | JFM

[40] Park, C.: A generalized Paley-Wiener-Zygmund integral and its applications. Proc. Am. Math. Soc. 23 (1969), 388-400. | DOI | MR | JFM

[41] Park, C., Skoug, D.: A note on Paley-Wiener-Zygmund stochastic integrals. Proc. Am. Math. Soc. 103 (1988), 591-601. | DOI | MR | JFM

[42] Park, C., Skoug, D.: A simple formula for conditional Wiener integrals with applications. Pac. J. Math. 135 (1988), 381-394. | DOI | MR | JFM

[43] Park, C., Skoug, D.: A Kac-Feynman integral equation for conditional Wiener integrals. J. Integral Equations Appl. 3 (1991), 411-427. | DOI | MR | JFM

[44] Park, C., Skoug, D.: Conditional Wiener integrals. II. Pac. J. Math. 167 (1995), 293-312. | DOI | MR | JFM

[45] Park, C., Skoug, D.: Conditional Fourier-Feynman transforms and conditional convolution products. J. Korean Math. Soc. 38 (2001), 61-76. | MR | JFM

[46] Park, C., Skoug, D., Storvick, D.: Fourier-Feynman transforms and the first variation. Rend. Circ. Mat. Palermo, II. Ser. 47 (1998), 277-292. | DOI | MR | JFM

[47] Park, C., Skoug, D., Storvick, D.: Relationships among the first variation, the convolution product, and the Fourier-Feynman transform. Rocky Mt. J. Math. 28 (1998), 1447-1468. | DOI | MR | JFM

[48] Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987). | MR | JFM

[49] Skoug, D., Storvick, D.: A survey of results involving transforms and convolutions in function space. Rocky Mt. J. Math. 34 (2004), 1147-1175. | DOI | MR | JFM

[50] Tucker, H. G.: A Graduate Course in Probability. Probability and Mathematical Statistics 2. Academic Press, New York (1967). | MR | JFM

[51] Yeh, J.: Stochastic Processes and the Wiener Integral. Pure and Applied Mathematics 13. Marcel Dekker, New York (1973). | MR | JFM

[52] Yeh, J.: Inversion of conditional expectations. Pac. J. Math. 52 (1974), 631-640. | DOI | MR | JFM

[53] Yeh, J.: Inversion of conditional Wiener integrals. Pac. J. Math. 59 (1975), 623-638. | DOI | MR | JFM

Cité par Sources :