On $k$-free numbers over Beatty sequences
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 839-847
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider $k$-free numbers over Beatty sequences. New results are given. In particular, for a fixed irrational number $\alpha >1$ of finite type $\tau \infty $ and any constant $\varepsilon >0$, we can show that $$ \sum _{ 1\leq n\leq x \atop [\alpha n+\beta ]\in \mathcal {Q}_{k}} 1- \frac {x}{ \zeta (k)} \ll x^{k/(2k-1)+\varepsilon }+x^{1-1/(\tau +1)+\varepsilon }, $$ where $\mathcal {Q}_{k}$ is the set of positive $k$-free integers and the implied constant depends only on $\alpha ,$ $\varepsilon ,$ $k$ and $\beta .$ This improves previous results. The main new ingredient of our idea is employing double exponential sums of the type $$ \sum _{1\leq h\leq H}\sum _{ 1\leq n\leq x \atop n\in \mathcal {Q}_{k}}e(\vartheta hn). $$
We consider $k$-free numbers over Beatty sequences. New results are given. In particular, for a fixed irrational number $\alpha >1$ of finite type $\tau \infty $ and any constant $\varepsilon >0$, we can show that $$ \sum _{ 1\leq n\leq x \atop [\alpha n+\beta ]\in \mathcal {Q}_{k}} 1- \frac {x}{ \zeta (k)} \ll x^{k/(2k-1)+\varepsilon }+x^{1-1/(\tau +1)+\varepsilon }, $$ where $\mathcal {Q}_{k}$ is the set of positive $k$-free integers and the implied constant depends only on $\alpha ,$ $\varepsilon ,$ $k$ and $\beta .$ This improves previous results. The main new ingredient of our idea is employing double exponential sums of the type $$ \sum _{1\leq h\leq H}\sum _{ 1\leq n\leq x \atop n\in \mathcal {Q}_{k}}e(\vartheta hn). $$
DOI : 10.21136/CMJ.2023.0304-22
Classification : 11B83, 11L07
Keywords: $k$-free number; exponential sum; Beatty sequence
@article{10_21136_CMJ_2023_0304_22,
     author = {Zhang, Wei},
     title = {On $k$-free numbers over {Beatty} sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {839--847},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0304-22},
     mrnumber = {4632860},
     zbl = {07729540},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0304-22/}
}
TY  - JOUR
AU  - Zhang, Wei
TI  - On $k$-free numbers over Beatty sequences
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 839
EP  - 847
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0304-22/
DO  - 10.21136/CMJ.2023.0304-22
LA  - en
ID  - 10_21136_CMJ_2023_0304_22
ER  - 
%0 Journal Article
%A Zhang, Wei
%T On $k$-free numbers over Beatty sequences
%J Czechoslovak Mathematical Journal
%D 2023
%P 839-847
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0304-22/
%R 10.21136/CMJ.2023.0304-22
%G en
%F 10_21136_CMJ_2023_0304_22
Zhang, Wei. On $k$-free numbers over Beatty sequences. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 839-847. doi: 10.21136/CMJ.2023.0304-22

[1] Abercrombie, A. G., Banks, W. D., Shparlinski, I. E.: Arithmetic functions on Beatty sequences. Acta Arith. 136 (2009), 81-89. | DOI | MR | JFM

[2] Banks, W. D., Shparlinski, I. E.: Short character sums with Beatty sequences. Math. Res. Lett. 13 (2006), 539-547. | DOI | MR | JFM

[3] Banks, W. D., Yeager, A. M.: Carmichael numbers composed of primes from a Beatty sequence. Colloq. Math. 125 (2011), 129-137. | DOI | MR | JFM

[4] Brüdern, J., Perelli, A.: Exponential sums and additive problems involving square-free numbers. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 591-613. | MR | JFM

[5] Dimitrov, S. I.: On the distribution of consecutive square-free numbers of the form $\lfloor\alpha n\rfloor,\lfloor\alpha n\rfloor+1$. Proc. Jangjeon Math. Soc. 22 (2019), 463-470. | MR | JFM

[6] Goryashin, D. V.: Squarefree numbers in the sequence $\lfloor \alpha n\rfloor$. Chebyshevskii Sb. 14 (2013), 42-48 Russian. | DOI | JFM

[7] Güloğlu, A. M., Nevans, C. W.: Sums of multiplicative functions over a Beatty sequence. Bull. Aust. Math. Soc. 78 (2008), 327-334. | DOI | MR | JFM

[8] Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications 53. AMS, Providence (2004). | DOI | MR | JFM

[9] Kim, V., Srichan, T., Mavecha, S.: On $r$-free integers in Beatty sequences. Bol. Soc. Mat. Mex., III. Ser. 28 (2022), Article ID 28, 10 pages. | DOI | MR | JFM

[10] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics. John Wiley & Sons, New York (1974). | MR | JFM

[11] Technau, M., Zafeiropoulos, A.: Metric results on summatory arithmetic functions on Beatty sets. Acta Arith. 197 (2021), 93-104. | DOI | MR | JFM

[12] Tolev, D. I.: On the exponential sum with square-free numbers. Bull. Lond. Math. Soc. 37 (2005), 827-834. | DOI | MR | JFM

[13] Vinogradov, I. M.: The Method of Trigonometrical Sums in the Theory of Numbers. Dover, Mineola (2004). | MR | JFM

Cité par Sources :