Another version of cosupport in ${\rm D}(R)$
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 431-452
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The goal of the article is to develop a theory dual to that of support in the derived category ${\rm D}(R)$. This is done by introducing `big' and `small' cosupport for complexes that are different from the cosupport in D. J. Benson, S. B. Iyengar, H. Krause (2012). We give some properties for cosupport that are similar, or rather dual, to those of support for complexes, study some relations between `big' and `small' cosupport and give some comparisons of support and cosupport. Finally, we investigate the dual notion of associated primes.
The goal of the article is to develop a theory dual to that of support in the derived category ${\rm D}(R)$. This is done by introducing `big' and `small' cosupport for complexes that are different from the cosupport in D. J. Benson, S. B. Iyengar, H. Krause (2012). We give some properties for cosupport that are similar, or rather dual, to those of support for complexes, study some relations between `big' and `small' cosupport and give some comparisons of support and cosupport. Finally, we investigate the dual notion of associated primes.
DOI : 10.21136/CMJ.2023.0282-21
Classification : 13D07, 13D09, 13E05
Keywords: cosupport; support; coassociated prime; associated prime
@article{10_21136_CMJ_2023_0282_21,
     author = {Qin, Junquan and Yang, Xiaoyan},
     title = {Another version of cosupport in ${\rm D}(R)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {431--452},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2023.0282-21},
     mrnumber = {4586903},
     zbl = {07729516},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0282-21/}
}
TY  - JOUR
AU  - Qin, Junquan
AU  - Yang, Xiaoyan
TI  - Another version of cosupport in ${\rm D}(R)$
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 431
EP  - 452
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0282-21/
DO  - 10.21136/CMJ.2023.0282-21
LA  - en
ID  - 10_21136_CMJ_2023_0282_21
ER  - 
%0 Journal Article
%A Qin, Junquan
%A Yang, Xiaoyan
%T Another version of cosupport in ${\rm D}(R)$
%J Czechoslovak Mathematical Journal
%D 2023
%P 431-452
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0282-21/
%R 10.21136/CMJ.2023.0282-21
%G en
%F 10_21136_CMJ_2023_0282_21
Qin, Junquan; Yang, Xiaoyan. Another version of cosupport in ${\rm D}(R)$. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 431-452. doi: 10.21136/CMJ.2023.0282-21

[1] Benson, D. J., Iyengar, S. B., Krause, H.: Local cohomology and support for triangulated categories. Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 575-621. | DOI | MR | JFM

[2] Benson, D. J., Iyengar, S. B., Krause, H.: Colocalizing subcategories and cosupport. J. Reine Angew. Math. 673 (2012), 161-207. | DOI | MR | JFM

[3] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[4] Christensen, L. W.: Sequences for complexes. Math. Scand. 89 (2001), 161-180. | DOI | MR | JFM

[5] Christensen, L. W., Foxby, H.-B.: Hyperhomological Algebra with Applications to Commutative Rings. Available at {\let \relax\brokenlink{ https://www.math.ttu.edu/ lchriste/download/918-}{final.pdf}} (2006), 111 pages.

[6] Foxby, H.-B.: Bounded complexes of flat modules. J. Pure Appl. Algebra 15 (1979), 149-172. | DOI | MR | JFM

[7] Grothendieck, A.: Local Cohomology. Lecture Notes in Mathematics 41. Springer, New York (1967). | DOI | MR | JFM

[8] Matlis, E.: The Koszul complex and duality. Commun. Algebra 1 (1974), 87-144. | DOI | MR | JFM

[9] Melkersson, L., Schenzel, P.: The co-localization of an Artinian module. Proc. Edinb. Math. Soc., II. Ser. 38 (1995), 121-131. | DOI | MR | JFM

[10] Neeman, A.: The chromatic tower for $D(R)$. Topology 31 (1992), 519-532. | DOI | MR | JFM

[11] Neeman, A.: Colocalizing subcategories of $D(R)$. J. Reine Angew. Math. 653 (2011), 221-243. | DOI | MR | JFM

[12] Richardson, A. S.: Co-localization, co-support and local homology. Rocky Mt. J. Math. 36 (2006), 1679-1703. | DOI | MR | JFM

[13] Sather-Wagstaff, S., Wicklein, R.: Support and adic finiteness for complexes. Commun. Algebra 45 (2017), 2569-2592. | DOI | MR | JFM

[14] Yassemi, S.: Coassociated primes. Commun. Algebra 23 (1995), 1473-1498. | DOI | MR | JFM

Cité par Sources :