On wsq-primary ideals
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 415-429
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let $R$ be a commutative ring with a nonzero identity and $Q$ a proper ideal of $R$. The proper ideal $Q$ is said to be a weakly strongly quasi-primary ideal if whenever $0\neq ab\in Q$ for some $a,b\in R$, then $a^{2}\in Q$ or $b\in \sqrt {Q}.$ Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite union of wsq-primary ideals.
DOI :
10.21136/CMJ.2023.0259-21
Classification :
05C25, 13A15, 13A99, 13F30
Keywords: primary ideal; weakly primary ideal; quasi-primary ideal; weakly 2-prime ideal; strongly quasi-primary ideal
Keywords: primary ideal; weakly primary ideal; quasi-primary ideal; weakly 2-prime ideal; strongly quasi-primary ideal
@article{10_21136_CMJ_2023_0259_21,
author = {Aslankarayi\u{g}it U\u{g}urlu, Emel and Bouba, El Mehdi and Tekir, \"Unsal and Ko\c{c}, Suat},
title = {On wsq-primary ideals},
journal = {Czechoslovak Mathematical Journal},
pages = {415--429},
publisher = {mathdoc},
volume = {73},
number = {2},
year = {2023},
doi = {10.21136/CMJ.2023.0259-21},
mrnumber = {4586902},
zbl = {07729515},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0259-21/}
}
TY - JOUR AU - Aslankarayiğit Uğurlu, Emel AU - Bouba, El Mehdi AU - Tekir, Ünsal AU - Koç, Suat TI - On wsq-primary ideals JO - Czechoslovak Mathematical Journal PY - 2023 SP - 415 EP - 429 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0259-21/ DO - 10.21136/CMJ.2023.0259-21 LA - en ID - 10_21136_CMJ_2023_0259_21 ER -
%0 Journal Article %A Aslankarayiğit Uğurlu, Emel %A Bouba, El Mehdi %A Tekir, Ünsal %A Koç, Suat %T On wsq-primary ideals %J Czechoslovak Mathematical Journal %D 2023 %P 415-429 %V 73 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0259-21/ %R 10.21136/CMJ.2023.0259-21 %G en %F 10_21136_CMJ_2023_0259_21
Aslankarayiğit Uğurlu, Emel; Bouba, El Mehdi; Tekir, Ünsal; Koç, Suat. On wsq-primary ideals. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 415-429. doi: 10.21136/CMJ.2023.0259-21
Cité par Sources :