On wsq-primary ideals
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 415-429.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let $R$ be a commutative ring with a nonzero identity and $Q$ a proper ideal of $R$. The proper ideal $Q$ is said to be a weakly strongly quasi-primary ideal if whenever $0\neq ab\in Q$ for some $a,b\in R$, then $a^{2}\in Q$ or $b\in \sqrt {Q}.$ Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite union of wsq-primary ideals.
DOI : 10.21136/CMJ.2023.0259-21
Classification : 05C25, 13A15, 13A99, 13F30
Keywords: primary ideal; weakly primary ideal; quasi-primary ideal; weakly 2-prime ideal; strongly quasi-primary ideal
@article{10_21136_CMJ_2023_0259_21,
     author = {Aslankarayi\u{g}it U\u{g}urlu, Emel and Bouba, El Mehdi and Tekir, \"Unsal and Ko\c{c}, Suat},
     title = {On wsq-primary ideals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {415--429},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2023},
     doi = {10.21136/CMJ.2023.0259-21},
     mrnumber = {4586902},
     zbl = {07729515},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0259-21/}
}
TY  - JOUR
AU  - Aslankarayiğit Uğurlu, Emel
AU  - Bouba, El Mehdi
AU  - Tekir, Ünsal
AU  - Koç, Suat
TI  - On wsq-primary ideals
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 415
EP  - 429
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0259-21/
DO  - 10.21136/CMJ.2023.0259-21
LA  - en
ID  - 10_21136_CMJ_2023_0259_21
ER  - 
%0 Journal Article
%A Aslankarayiğit Uğurlu, Emel
%A Bouba, El Mehdi
%A Tekir, Ünsal
%A Koç, Suat
%T On wsq-primary ideals
%J Czechoslovak Mathematical Journal
%D 2023
%P 415-429
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0259-21/
%R 10.21136/CMJ.2023.0259-21
%G en
%F 10_21136_CMJ_2023_0259_21
Aslankarayiğit Uğurlu, Emel; Bouba, El Mehdi; Tekir, Ünsal; Koç, Suat. On wsq-primary ideals. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 415-429. doi : 10.21136/CMJ.2023.0259-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0259-21/

Cité par Sources :