Keywords: positively based algebra; indecomposable module; cell module
@article{10_21136_CMJ_2023_0254_22,
author = {Lin, Shiyu and Yang, Shilin},
title = {Representations of a class of positively based algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {811--838},
year = {2023},
volume = {73},
number = {3},
doi = {10.21136/CMJ.2023.0254-22},
mrnumber = {4632859},
zbl = {07729539},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0254-22/}
}
TY - JOUR AU - Lin, Shiyu AU - Yang, Shilin TI - Representations of a class of positively based algebras JO - Czechoslovak Mathematical Journal PY - 2023 SP - 811 EP - 838 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0254-22/ DO - 10.21136/CMJ.2023.0254-22 LA - en ID - 10_21136_CMJ_2023_0254_22 ER -
%0 Journal Article %A Lin, Shiyu %A Yang, Shilin %T Representations of a class of positively based algebras %J Czechoslovak Mathematical Journal %D 2023 %P 811-838 %V 73 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0254-22/ %R 10.21136/CMJ.2023.0254-22 %G en %F 10_21136_CMJ_2023_0254_22
Lin, Shiyu; Yang, Shilin. Representations of a class of positively based algebras. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 811-838. doi: 10.21136/CMJ.2023.0254-22
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Volume 1: Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM
[2] Gel'fand, I. M., Ponomarev, V. A.: Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space. Hilbert Space Operators Operator Algebras Colloquia Math. Soc. János Bolyai 5. North-Holland, Amsterdam (1972), 163-237. | MR | JFM
[3] Gunnlaugsdóttir, E.: Monoidal structure of the category of $u_{q}^{+}$-modules. Linear Algebra Appl. 365 (2003), 183-199. | DOI | MR | JFM
[4] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), 165-184. | DOI | MR | JFM
[5] Kildetoft, D., Mazorchuk, V.: Special modules over positively based algebras. Doc. Math. 21 (2016), 1171-1192. | DOI | MR | JFM
[6] Kudryavtseva, G., Mazorchuk, V.: On multisemigroups. Port. Math. (N.S.) 72 (2015), 47-80. | DOI | MR | JFM
[7] Li, F.: Weak Hopf algebras and some new solutions of the quantum Yang-Baxter equation. J. Algebra 208 (1998), 72-100. | DOI | MR | JFM
[8] Li, L., Zhang, Y.: The Green rings of the generalized Taft Hopf algebras. Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 275-288. | DOI | MR | JFM
[9] Lusztig, G.: Irreducible representations of finite classical groups. Invent. Math. 43 (1977), 125-175. | DOI | MR | JFM
[10] Lusztig, G.: A class of irreducible representations of Weyl group. Indag. Math. 41 (1979), 323-335. | DOI | MR | JFM
[11] Lusztig, G.: A class of irreducible representations of Weyl group. II. Indag. Math. 44 (1982), 219-226. | DOI | MR | JFM
[12] Mazorchuk, V., Miemietz, V.: Cell 2-representations of finitary 2-categories. Compos. Math. 147 (2011), 1519-1545. | DOI | MR | JFM
[13] Nazarova, L. A.: Representations of a tetrad. Math. USSR, Izv. 1 (1969), 1305-1323 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 31 1967 1361-1378. | DOI | MR | JFM
[14] Su, D., Yang, S.: Representation rings of small quantum groups $\overline{U}_q(sl_2)$. J. Math. Phys. 58 (2017), Article ID 091704, 24 pages. | DOI | MR | JFM
[15] Su, D., Yang, S.: Green rings of weak Hopf algebras based on generalized Taft algebras. Period. Math. Hung. 76 (2018), 229-242. | DOI | MR | JFM
[16] Yang, S.: Representations of simple pointed Hopf algebras. J. Algebra Appl. 3 (2004), 91-104. | DOI | MR | JFM
Cité par Sources :