Regularity of powers of binomial edge ideals of complete multipartite graphs
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 793-810.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G=K_{n_1,n_2,\ldots ,n_r}$ be a complete multipartite graph on $[n]$ with $n>r>1$ and $J_G$ being its binomial edge ideal. It is proved that the Castelnuovo-Mumford regularity ${\rm reg}(J^t_G)$ is $2t+1$ for any positive integer $t$.
DOI : 10.21136/CMJ.2023.0246-22
Classification : 05E40, 13D02
Keywords: Castelnuovo-Mumford regularity; binomial edge ideal; multipartite graph
@article{10_21136_CMJ_2023_0246_22,
     author = {Wang, Hong and Tang, Zhongming},
     title = {Regularity of powers of binomial edge ideals of complete multipartite graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {793--810},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2023},
     doi = {10.21136/CMJ.2023.0246-22},
     mrnumber = {4632858},
     zbl = {07729538},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0246-22/}
}
TY  - JOUR
AU  - Wang, Hong
AU  - Tang, Zhongming
TI  - Regularity of powers of binomial edge ideals of complete multipartite graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 793
EP  - 810
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0246-22/
DO  - 10.21136/CMJ.2023.0246-22
LA  - en
ID  - 10_21136_CMJ_2023_0246_22
ER  - 
%0 Journal Article
%A Wang, Hong
%A Tang, Zhongming
%T Regularity of powers of binomial edge ideals of complete multipartite graphs
%J Czechoslovak Mathematical Journal
%D 2023
%P 793-810
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0246-22/
%R 10.21136/CMJ.2023.0246-22
%G en
%F 10_21136_CMJ_2023_0246_22
Wang, Hong; Tang, Zhongming. Regularity of powers of binomial edge ideals of complete multipartite graphs. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 793-810. doi : 10.21136/CMJ.2023.0246-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0246-22/

Cité par Sources :