Keywords: periodic complex; orbit category; triangulated hull; derived category; derived equivalence; dg category; Koszul duality
@article{10_21136_CMJ_2023_0234_22,
author = {Liu, Jian},
title = {Triangulated categories of periodic complexes and orbit categories},
journal = {Czechoslovak Mathematical Journal},
pages = {765--792},
year = {2023},
volume = {73},
number = {3},
doi = {10.21136/CMJ.2023.0234-22},
mrnumber = {4632857},
zbl = {07729537},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0234-22/}
}
TY - JOUR AU - Liu, Jian TI - Triangulated categories of periodic complexes and orbit categories JO - Czechoslovak Mathematical Journal PY - 2023 SP - 765 EP - 792 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0234-22/ DO - 10.21136/CMJ.2023.0234-22 LA - en ID - 10_21136_CMJ_2023_0234_22 ER -
Liu, Jian. Triangulated categories of periodic complexes and orbit categories. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 765-792. doi: 10.21136/CMJ.2023.0234-22
[1] Avramov, L. L., Buchweitz, R.-O., Iyengar, S. B.: Class and rank of differential modules. Invent. Math. 169 (2007), 1-35. | DOI | MR | JFM
[2] Avramov, L. L., Buchweitz, R.-O., Iyengar, S. B., Miller, C.: Homology of perfect complexes. Adv. Math. 223 (2010), 1731-1781. | DOI | MR | JFM
[3] Beilinson, A. A.: Coherent sheaves on $P^n$ and problems of linear algebra. Funkts. Anal. Prilozh. 12 (1978), 68-69 Russian. | MR | JFM
[4] Beilinson, A. A., Bernstein, J., Deligne, P.: Faisceaux pervers. Analysis and Topology on Singular Spaces. I Astérisque 100. Société mathématique de France, Paris (1982), 5-171 French. | MR | JFM
[5] Beilinson, A. A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9 (1996), 473-527. | DOI | MR | JFM
[6] Benson, D. J., Iyengar, S. B., Krause, H.: Stratifying modular representations of finite groups. Ann. Math. (2) 174 (2011), 1643-1684. | DOI | MR | JFM
[7] Bernstein, I. N., Gel'fand, I. M., Gel'fand, S. I.: Algebraic vector bundles on $P^n$ and problems of linear algebra. Funkts. Anal. Prilozh. 12 (1978), 66-67 Russian. | MR | JFM
[8] Bökstedt, M., Neeman, A.: Homotopy limits in triangulated categories. Compos. Math. 86 (1993), 209-234. | MR | JFM
[9] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM
[10] Buchweitz, R.-O.: Maximal Cohen-Macaulay Modules and Tate Cohomology. Mathematical Surveys and Monographs 262. AMS, Providence (2021). | DOI | MR | JFM
[11] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Mathematical Series 19. Princeton University Press, Princeton (1956). | MR | JFM
[12] Chen, X.-W., Liu, J., Wang, R.: Singular equivalences induced by bimodules and quadratic monomial algebras. (to appear) in Algebr. Represent. Theory. | DOI | MR
[13] Drinfeld, V.: DG quotients of DG categories. J. Algebra 272 (2004), 643-691. | DOI | MR | JFM
[14] Eisenbud, D., Fløystad, G., Schreyer, F.-O.: Sheaf cohomology and free resolutions over exterior algebras. Trans. Am. Math. Soc. 355 (2003), 4397-4426. | DOI | MR | JFM
[15] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30. Walter De Gruyter, Berlin (2000). | DOI | MR | JFM
[16] Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62 (1987), 339-389. | DOI | MR | JFM
[17] Iyengar, S. B., Krause, H.: Acyclicity versus total acyclicity for complexes over Noetherian rings. Doc. Math. 11 (2006), 207-240. | DOI | MR | JFM
[18] Iyengar, S. B., Letz, J. C., Liu, J., Pollitz, J.: Exceptional complete intersection maps of local rings. Pac. J. Math. 318 (2022), 275-293. | DOI | MR | JFM
[19] Kalck, M., Yang, D.: Derived categories of graded gentle one-cycle algebras. J. Pure Appl. Algebra 222 (2018), 3005-3035. | DOI | MR | JFM
[20] Keller, B.: Deriving DG categories. Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 63-102. | DOI | MR | JFM
[21] Keller, B.: On the cyclic homology of exact categories. J. Pure Appl. Algebra 136 (1999), 1-56. | DOI | MR | JFM
[22] Keller, B.: On triangulated orbit categories. Doc. Math. 10 (2005), 551-581. | DOI | MR | JFM
[23] Keller, B.: Corrections to `On triangulated orbit categories'. Available at {\def\let \relax \brokenlink{ https://webusers.imj-prg.fr/ bernhard.keller/publ/corrTriaOrbit.pdf}}\kern0pt (2009), 5 pages.
[24] Krause, H.: The stable derived category of a Noetherian scheme. Compos. Math. 141 (2005), 1128-1162. | DOI | MR | JFM
[25] Krause, H.: Localization theory for triangulated categories. Triangulated Categories London Mathematical Society Lecture Note Series 375. Cambridge University Press, Cambridge (2010), 161-235. | DOI | MR | JFM
[26] Neeman, A.: The connection between the $K$-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 547-566. | DOI | MR | JFM
[27] Neeman, A.: The Grothendieck duality theorem via Bousfield's techniques and Brown representability. J. Am. Math. Soc. 9 (1996), 205-236. | DOI | MR | JFM
[28] Neeman, A.: Triangulated Categories. Annals of Mathematics Studies 148. Princeton University Press, Princeton (2001). | DOI | MR | JFM
[29] Orlov, D.: Derived categories of coherent sheaves and triangulated categories of singularities. Algebra, Arithmetic, and Geometry. Volume II Progress in Mathematics 270. Birkhäuser, Boston (2009), 503-531. | DOI | MR | JFM
[30] Peng, L., Xiao, J.: Root categories and simple Lie algebras. J. Algebra 198 (1997), 19-56. | DOI | MR | JFM
[31] Peng, L., Xiao, J.: Triangulated categories and Kac-Moody algebras. Invent. Math. 140 (2000), 563-603. | DOI | MR | JFM
[32] Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. | DOI | MR | JFM
[33] Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. | DOI | MR | JFM
[34] Ringel, C. M., Zhang, P.: Representations of quivers over the algebra of dual numbers. J. Algebra 475 (2017), 327-360. | DOI | MR | JFM
[35] Stai, T.: The triangulated hull of periodic complexes. Math. Res. Lett. 25 (2018), 199-236. | DOI | MR | JFM
[36] Tang, X., Huang, Z.: Higher differential objects in additive categories. J. Algebra 549 (2020), 128-164. | DOI | MR | JFM
[37] Zhao, X.: A note on the equivalence of $m$-periodic derived categories. Sci. China, Math. 57 (2014), 2329-2334. | DOI | MR | JFM
Cité par Sources :