Triangulated categories of periodic complexes and orbit categories
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 765-792
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the triangulated hull of orbit categories of the perfect derived category and the bounded derived category of a ring concerning the power of the suspension functor. It turns out that the triangulated hull corresponds to the full subcategory of compact objects of certain triangulated categories of periodic complexes. This specializes to Stai and Zhao's result on the finite dimensional algebra of finite global dimension. As the first application, if $A$, $B$ are flat algebras over a commutative ring and they are derived equivalent, then the corresponding derived categories of $n$-periodic complexes are triangle equivalent. As the second application, we get the periodic version of the Koszul duality.
We investigate the triangulated hull of orbit categories of the perfect derived category and the bounded derived category of a ring concerning the power of the suspension functor. It turns out that the triangulated hull corresponds to the full subcategory of compact objects of certain triangulated categories of periodic complexes. This specializes to Stai and Zhao's result on the finite dimensional algebra of finite global dimension. As the first application, if $A$, $B$ are flat algebras over a commutative ring and they are derived equivalent, then the corresponding derived categories of $n$-periodic complexes are triangle equivalent. As the second application, we get the periodic version of the Koszul duality.
DOI : 10.21136/CMJ.2023.0234-22
Classification : 16E45, 18E20, 18G35, 18G80
Keywords: periodic complex; orbit category; triangulated hull; derived category; derived equivalence; dg category; Koszul duality
@article{10_21136_CMJ_2023_0234_22,
     author = {Liu, Jian},
     title = {Triangulated categories of periodic complexes and orbit categories},
     journal = {Czechoslovak Mathematical Journal},
     pages = {765--792},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0234-22},
     mrnumber = {4632857},
     zbl = {07729537},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0234-22/}
}
TY  - JOUR
AU  - Liu, Jian
TI  - Triangulated categories of periodic complexes and orbit categories
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 765
EP  - 792
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0234-22/
DO  - 10.21136/CMJ.2023.0234-22
LA  - en
ID  - 10_21136_CMJ_2023_0234_22
ER  - 
%0 Journal Article
%A Liu, Jian
%T Triangulated categories of periodic complexes and orbit categories
%J Czechoslovak Mathematical Journal
%D 2023
%P 765-792
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0234-22/
%R 10.21136/CMJ.2023.0234-22
%G en
%F 10_21136_CMJ_2023_0234_22
Liu, Jian. Triangulated categories of periodic complexes and orbit categories. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 765-792. doi: 10.21136/CMJ.2023.0234-22

[1] Avramov, L. L., Buchweitz, R.-O., Iyengar, S. B.: Class and rank of differential modules. Invent. Math. 169 (2007), 1-35. | DOI | MR | JFM

[2] Avramov, L. L., Buchweitz, R.-O., Iyengar, S. B., Miller, C.: Homology of perfect complexes. Adv. Math. 223 (2010), 1731-1781. | DOI | MR | JFM

[3] Beilinson, A. A.: Coherent sheaves on $P^n$ and problems of linear algebra. Funkts. Anal. Prilozh. 12 (1978), 68-69 Russian. | MR | JFM

[4] Beilinson, A. A., Bernstein, J., Deligne, P.: Faisceaux pervers. Analysis and Topology on Singular Spaces. I Astérisque 100. Société mathématique de France, Paris (1982), 5-171 French. | MR | JFM

[5] Beilinson, A. A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9 (1996), 473-527. | DOI | MR | JFM

[6] Benson, D. J., Iyengar, S. B., Krause, H.: Stratifying modular representations of finite groups. Ann. Math. (2) 174 (2011), 1643-1684. | DOI | MR | JFM

[7] Bernstein, I. N., Gel'fand, I. M., Gel'fand, S. I.: Algebraic vector bundles on $P^n$ and problems of linear algebra. Funkts. Anal. Prilozh. 12 (1978), 66-67 Russian. | MR | JFM

[8] Bökstedt, M., Neeman, A.: Homotopy limits in triangulated categories. Compos. Math. 86 (1993), 209-234. | MR | JFM

[9] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[10] Buchweitz, R.-O.: Maximal Cohen-Macaulay Modules and Tate Cohomology. Mathematical Surveys and Monographs 262. AMS, Providence (2021). | DOI | MR | JFM

[11] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Mathematical Series 19. Princeton University Press, Princeton (1956). | MR | JFM

[12] Chen, X.-W., Liu, J., Wang, R.: Singular equivalences induced by bimodules and quadratic monomial algebras. (to appear) in Algebr. Represent. Theory. | DOI | MR

[13] Drinfeld, V.: DG quotients of DG categories. J. Algebra 272 (2004), 643-691. | DOI | MR | JFM

[14] Eisenbud, D., Fløystad, G., Schreyer, F.-O.: Sheaf cohomology and free resolutions over exterior algebras. Trans. Am. Math. Soc. 355 (2003), 4397-4426. | DOI | MR | JFM

[15] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30. Walter De Gruyter, Berlin (2000). | DOI | MR | JFM

[16] Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62 (1987), 339-389. | DOI | MR | JFM

[17] Iyengar, S. B., Krause, H.: Acyclicity versus total acyclicity for complexes over Noetherian rings. Doc. Math. 11 (2006), 207-240. | DOI | MR | JFM

[18] Iyengar, S. B., Letz, J. C., Liu, J., Pollitz, J.: Exceptional complete intersection maps of local rings. Pac. J. Math. 318 (2022), 275-293. | DOI | MR | JFM

[19] Kalck, M., Yang, D.: Derived categories of graded gentle one-cycle algebras. J. Pure Appl. Algebra 222 (2018), 3005-3035. | DOI | MR | JFM

[20] Keller, B.: Deriving DG categories. Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 63-102. | DOI | MR | JFM

[21] Keller, B.: On the cyclic homology of exact categories. J. Pure Appl. Algebra 136 (1999), 1-56. | DOI | MR | JFM

[22] Keller, B.: On triangulated orbit categories. Doc. Math. 10 (2005), 551-581. | DOI | MR | JFM

[23] Keller, B.: Corrections to `On triangulated orbit categories'. Available at {\def\let \relax \brokenlink{ https://webusers.imj-prg.fr/ bernhard.keller/publ/corrTriaOrbit.pdf}}\kern0pt (2009), 5 pages.

[24] Krause, H.: The stable derived category of a Noetherian scheme. Compos. Math. 141 (2005), 1128-1162. | DOI | MR | JFM

[25] Krause, H.: Localization theory for triangulated categories. Triangulated Categories London Mathematical Society Lecture Note Series 375. Cambridge University Press, Cambridge (2010), 161-235. | DOI | MR | JFM

[26] Neeman, A.: The connection between the $K$-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 547-566. | DOI | MR | JFM

[27] Neeman, A.: The Grothendieck duality theorem via Bousfield's techniques and Brown representability. J. Am. Math. Soc. 9 (1996), 205-236. | DOI | MR | JFM

[28] Neeman, A.: Triangulated Categories. Annals of Mathematics Studies 148. Princeton University Press, Princeton (2001). | DOI | MR | JFM

[29] Orlov, D.: Derived categories of coherent sheaves and triangulated categories of singularities. Algebra, Arithmetic, and Geometry. Volume II Progress in Mathematics 270. Birkhäuser, Boston (2009), 503-531. | DOI | MR | JFM

[30] Peng, L., Xiao, J.: Root categories and simple Lie algebras. J. Algebra 198 (1997), 19-56. | DOI | MR | JFM

[31] Peng, L., Xiao, J.: Triangulated categories and Kac-Moody algebras. Invent. Math. 140 (2000), 563-603. | DOI | MR | JFM

[32] Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. | DOI | MR | JFM

[33] Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. | DOI | MR | JFM

[34] Ringel, C. M., Zhang, P.: Representations of quivers over the algebra of dual numbers. J. Algebra 475 (2017), 327-360. | DOI | MR | JFM

[35] Stai, T.: The triangulated hull of periodic complexes. Math. Res. Lett. 25 (2018), 199-236. | DOI | MR | JFM

[36] Tang, X., Huang, Z.: Higher differential objects in additive categories. J. Algebra 549 (2020), 128-164. | DOI | MR | JFM

[37] Zhao, X.: A note on the equivalence of $m$-periodic derived categories. Sci. China, Math. 57 (2014), 2329-2334. | DOI | MR | JFM

Cité par Sources :