A new approach to antisymmetric infinitesimal bialgebras
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 755-764
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present a notion of an anti-covariant bialgebra extending the anti-symmetric infinitesimal bialgebra and also provide some equivalent characterizations of it. We also prove that an anti-associative Yang-Baxter pair can produce a special Rota-Baxter system.
We present a notion of an anti-covariant bialgebra extending the anti-symmetric infinitesimal bialgebra and also provide some equivalent characterizations of it. We also prove that an anti-associative Yang-Baxter pair can produce a special Rota-Baxter system.
DOI : 10.21136/CMJ.2023.0232-22
Classification : 16T10, 16T25, 17B38
Keywords: infinitesimal bialgebra; quasitriangular infinitesimal bialgebra
@article{10_21136_CMJ_2023_0232_22,
     author = {Ma, Tianshui and Li, Bei and Li, Jie and Chen, Miaoshuang},
     title = {A new approach to antisymmetric infinitesimal bialgebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {755--764},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0232-22},
     mrnumber = {4632856},
     zbl = {07729536},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0232-22/}
}
TY  - JOUR
AU  - Ma, Tianshui
AU  - Li, Bei
AU  - Li, Jie
AU  - Chen, Miaoshuang
TI  - A new approach to antisymmetric infinitesimal bialgebras
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 755
EP  - 764
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0232-22/
DO  - 10.21136/CMJ.2023.0232-22
LA  - en
ID  - 10_21136_CMJ_2023_0232_22
ER  - 
%0 Journal Article
%A Ma, Tianshui
%A Li, Bei
%A Li, Jie
%A Chen, Miaoshuang
%T A new approach to antisymmetric infinitesimal bialgebras
%J Czechoslovak Mathematical Journal
%D 2023
%P 755-764
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0232-22/
%R 10.21136/CMJ.2023.0232-22
%G en
%F 10_21136_CMJ_2023_0232_22
Ma, Tianshui; Li, Bei; Li, Jie; Chen, Miaoshuang. A new approach to antisymmetric infinitesimal bialgebras. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 755-764. doi: 10.21136/CMJ.2023.0232-22

[1] Aguiar, M.: Infinitesimal Hopf algebras. New Trends in Hopf Algebra Theory Contemporary Mathematics 267. AMS, Providence (2000), 1-29. | DOI | MR | JFM

[2] Aguiar, M.: On the associative analog of Lie bialgebras. J. Algebra 244 (2001), 492-532. | DOI | MR | JFM

[3] Bai, C.: Double constructions of Frobenius algebras, Connes cocycles and their duality. J. Noncommut. Geom. 4 (2010), 475-530. | DOI | MR | JFM

[4] Bai, C., Guo, L., Ma, T.: Bialgebras, Frobenius algebras and associative Yang-Baxter equations for Rota-Baxter algebras. Available at , 27 pages. | arXiv | MR

[5] Brzeziński, T.: Rota-Baxter systems, dendriform algebras and covariant bialgebras. J. Algebra 460 (2016), 1-25. | DOI | MR | JFM

[6] Drinfel'd, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras and geometric meaning of the classical Yang-Baxter equations. Sov. Math., Dokl. 27 (1983), 67-71 translation from Dokl. Akad. Nauk SSSR 268 1983 285-287. | MR | JFM

[7] Gao, X., Wang, X.: Infinitesimal unitary Hopf algebras and planar rooted forests. J. Algebr. Comb. 49 (2019), 437-460. | DOI | MR | JFM

[8] Joni, S. A., Rota, G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61 (1979), 93-139. | DOI | MR | JFM

[9] Liu, L., Makhlouf, A., Menini, C., Panaite, F.: BiHom-Novikov algebras and infinitesimal BiHom-bialgebras. J. Algebra 560 (2020), 1146-1172. | DOI | MR | JFM

[10] Loday, J.-L., Ronco, M.: On the structure of cofree Hopf algebras. J. Reine Angew. Math. 592 (2006), 123-155. | DOI | MR | JFM

[11] Ma, T., Li, J.: Nonhomogeneous associative Yang-Baxter equations. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 65 (2022), 97-118. | MR

[12] Ma, T., Li, J., Yang, T.: Coquasitriangular infinitesimal BiHom-bialgebras and related structures. Commun. Algebra 49 (2021), 2423-2443. | DOI | MR | JFM

[13] Ma, T., Makhlouf, A., Silvestrov, S.: Rota-Baxter cosystems and coquasitriangular mixed bialgebras. J. Algebra Appl. 20 (2021), Article ID 2150064, 28 pages. | DOI | MR | JFM

[14] Ma, T., Yang, H.: Drinfeld double for infinitesimal BiHom-bialgebras. Adv. Appl. Clifford Algebr. 30 (2020), Article ID 42, 22 pages. | DOI | MR | JFM

[15] Ma, T., Yang, H., Zhang, L., Zheng, H.: Quasitriangular covariant monoidal BiHom-bialgebras, associative monoidal BiHom-Yang-Baxter equations and Rota-Baxter paired monoidal BiHom-modules. Colloq. Math. 161 (2020), 189-221. | DOI | MR | JFM

[16] Wang, S., Wang, S.: Drinfeld double for braided infinitesimal Hopf algebras. Commun. Algebra 42 (2014), 2195-2212. | DOI | MR | JFM

[17] Yau, D.: Infinitesimal Hom-bialgebras and Hom-Lie bialgebras. Available at , 35 pages. | arXiv | MR

[18] Zhang, Y., Chen, D., Gao, X., Luo, Y.-F.: Weighted infinitesimal unitary bialgebras on rooted forests and weighted cocycles. Pac. J. Math. 302 (2019), 741-766. | DOI | MR | JFM

[19] Zhang, Y., Gao, X.: Weighted infinitesimal bialgebras. Available at , 44 pages. | arXiv

[20] Zhang, Y., Gao, X., Luo, Y.: Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras. J. Algebr. Comb. 53 (2021), 771-803. | DOI | MR | JFM

[21] Zhelyabin, V. N.: Jordan bialgebras and their connection with Lie bialgebras. Algebra Logic 36 (1997), 1-15. | DOI | MR | JFM

Cité par Sources :