Keywords: infinitesimal bialgebra; quasitriangular infinitesimal bialgebra
@article{10_21136_CMJ_2023_0232_22,
author = {Ma, Tianshui and Li, Bei and Li, Jie and Chen, Miaoshuang},
title = {A new approach to antisymmetric infinitesimal bialgebras},
journal = {Czechoslovak Mathematical Journal},
pages = {755--764},
year = {2023},
volume = {73},
number = {3},
doi = {10.21136/CMJ.2023.0232-22},
mrnumber = {4632856},
zbl = {07729536},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0232-22/}
}
TY - JOUR AU - Ma, Tianshui AU - Li, Bei AU - Li, Jie AU - Chen, Miaoshuang TI - A new approach to antisymmetric infinitesimal bialgebras JO - Czechoslovak Mathematical Journal PY - 2023 SP - 755 EP - 764 VL - 73 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0232-22/ DO - 10.21136/CMJ.2023.0232-22 LA - en ID - 10_21136_CMJ_2023_0232_22 ER -
%0 Journal Article %A Ma, Tianshui %A Li, Bei %A Li, Jie %A Chen, Miaoshuang %T A new approach to antisymmetric infinitesimal bialgebras %J Czechoslovak Mathematical Journal %D 2023 %P 755-764 %V 73 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0232-22/ %R 10.21136/CMJ.2023.0232-22 %G en %F 10_21136_CMJ_2023_0232_22
Ma, Tianshui; Li, Bei; Li, Jie; Chen, Miaoshuang. A new approach to antisymmetric infinitesimal bialgebras. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 755-764. doi: 10.21136/CMJ.2023.0232-22
[1] Aguiar, M.: Infinitesimal Hopf algebras. New Trends in Hopf Algebra Theory Contemporary Mathematics 267. AMS, Providence (2000), 1-29. | DOI | MR | JFM
[2] Aguiar, M.: On the associative analog of Lie bialgebras. J. Algebra 244 (2001), 492-532. | DOI | MR | JFM
[3] Bai, C.: Double constructions of Frobenius algebras, Connes cocycles and their duality. J. Noncommut. Geom. 4 (2010), 475-530. | DOI | MR | JFM
[4] Bai, C., Guo, L., Ma, T.: Bialgebras, Frobenius algebras and associative Yang-Baxter equations for Rota-Baxter algebras. Available at , 27 pages. | arXiv | MR
[5] Brzeziński, T.: Rota-Baxter systems, dendriform algebras and covariant bialgebras. J. Algebra 460 (2016), 1-25. | DOI | MR | JFM
[6] Drinfel'd, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras and geometric meaning of the classical Yang-Baxter equations. Sov. Math., Dokl. 27 (1983), 67-71 translation from Dokl. Akad. Nauk SSSR 268 1983 285-287. | MR | JFM
[7] Gao, X., Wang, X.: Infinitesimal unitary Hopf algebras and planar rooted forests. J. Algebr. Comb. 49 (2019), 437-460. | DOI | MR | JFM
[8] Joni, S. A., Rota, G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61 (1979), 93-139. | DOI | MR | JFM
[9] Liu, L., Makhlouf, A., Menini, C., Panaite, F.: BiHom-Novikov algebras and infinitesimal BiHom-bialgebras. J. Algebra 560 (2020), 1146-1172. | DOI | MR | JFM
[10] Loday, J.-L., Ronco, M.: On the structure of cofree Hopf algebras. J. Reine Angew. Math. 592 (2006), 123-155. | DOI | MR | JFM
[11] Ma, T., Li, J.: Nonhomogeneous associative Yang-Baxter equations. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 65 (2022), 97-118. | MR
[12] Ma, T., Li, J., Yang, T.: Coquasitriangular infinitesimal BiHom-bialgebras and related structures. Commun. Algebra 49 (2021), 2423-2443. | DOI | MR | JFM
[13] Ma, T., Makhlouf, A., Silvestrov, S.: Rota-Baxter cosystems and coquasitriangular mixed bialgebras. J. Algebra Appl. 20 (2021), Article ID 2150064, 28 pages. | DOI | MR | JFM
[14] Ma, T., Yang, H.: Drinfeld double for infinitesimal BiHom-bialgebras. Adv. Appl. Clifford Algebr. 30 (2020), Article ID 42, 22 pages. | DOI | MR | JFM
[15] Ma, T., Yang, H., Zhang, L., Zheng, H.: Quasitriangular covariant monoidal BiHom-bialgebras, associative monoidal BiHom-Yang-Baxter equations and Rota-Baxter paired monoidal BiHom-modules. Colloq. Math. 161 (2020), 189-221. | DOI | MR | JFM
[16] Wang, S., Wang, S.: Drinfeld double for braided infinitesimal Hopf algebras. Commun. Algebra 42 (2014), 2195-2212. | DOI | MR | JFM
[17] Yau, D.: Infinitesimal Hom-bialgebras and Hom-Lie bialgebras. Available at , 35 pages. | arXiv | MR
[18] Zhang, Y., Chen, D., Gao, X., Luo, Y.-F.: Weighted infinitesimal unitary bialgebras on rooted forests and weighted cocycles. Pac. J. Math. 302 (2019), 741-766. | DOI | MR | JFM
[19] Zhang, Y., Gao, X.: Weighted infinitesimal bialgebras. Available at , 44 pages. | arXiv
[20] Zhang, Y., Gao, X., Luo, Y.: Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras. J. Algebr. Comb. 53 (2021), 771-803. | DOI | MR | JFM
[21] Zhelyabin, V. N.: Jordan bialgebras and their connection with Lie bialgebras. Algebra Logic 36 (1997), 1-15. | DOI | MR | JFM
Cité par Sources :