Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_CMJ_2023_0230_21, author = {Kim, Jae-Myoung}, title = {Upper and lower convergence rates for strong solutions of the {3D} {non-Newtonian} flows associated with {Maxwell} equations under large initial perturbation}, journal = {Czechoslovak Mathematical Journal}, pages = {395--413}, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2023}, doi = {10.21136/CMJ.2023.0230-21}, mrnumber = {4586901}, zbl = {07729514}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0230-21/} }
TY - JOUR AU - Kim, Jae-Myoung TI - Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation JO - Czechoslovak Mathematical Journal PY - 2023 SP - 395 EP - 413 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0230-21/ DO - 10.21136/CMJ.2023.0230-21 LA - en ID - 10_21136_CMJ_2023_0230_21 ER -
%0 Journal Article %A Kim, Jae-Myoung %T Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation %J Czechoslovak Mathematical Journal %D 2023 %P 395-413 %V 73 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0230-21/ %R 10.21136/CMJ.2023.0230-21 %G en %F 10_21136_CMJ_2023_0230_21
Kim, Jae-Myoung. Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 395-413. doi : 10.21136/CMJ.2023.0230-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0230-21/
Cité par Sources :