Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 395-413
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show the upper and lower bounds of convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under a large initial perturbation.
We show the upper and lower bounds of convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under a large initial perturbation.
DOI : 10.21136/CMJ.2023.0230-21
Classification : 35B35, 35Q30, 76A05
Keywords: non-Newtonian fluid; MHD equation; decay estimate; large initial perturbation
@article{10_21136_CMJ_2023_0230_21,
     author = {Kim, Jae-Myoung},
     title = {Upper and lower convergence rates for strong solutions of the {3D} {non-Newtonian} flows associated with {Maxwell} equations under large initial perturbation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {395--413},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2023.0230-21},
     mrnumber = {4586901},
     zbl = {07729514},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0230-21/}
}
TY  - JOUR
AU  - Kim, Jae-Myoung
TI  - Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 395
EP  - 413
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0230-21/
DO  - 10.21136/CMJ.2023.0230-21
LA  - en
ID  - 10_21136_CMJ_2023_0230_21
ER  - 
%0 Journal Article
%A Kim, Jae-Myoung
%T Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation
%J Czechoslovak Mathematical Journal
%D 2023
%P 395-413
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0230-21/
%R 10.21136/CMJ.2023.0230-21
%G en
%F 10_21136_CMJ_2023_0230_21
Kim, Jae-Myoung. Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 395-413. doi: 10.21136/CMJ.2023.0230-21

[1] Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London (1974).

[2] Bae, H.-O., Jin, B. J.: Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations. J. Differ. Equations 209 (2005), 365-391. | DOI | MR | JFM

[3] Benvenutti, M. J., Ferreira, L. C. F.: Existence and stability of global large strong solutions for the Hall-MHD system. Differ. Integral Equ. 29 (2016), 977-1000. | MR | JFM

[4] Gunzburger, M. D., Ladyzhenskaya, O. A., Peterson, J. S.: On the global unique solvability of initial-boundary value problems for the coupled modified Navier-Stokes and Maxwell equations. J. Math. Fluid Mech. 6 (2004), 462-482. | DOI | MR | JFM

[5] Guo, B., Zhu, P.: Algebraic $L^2$ decay for the solution to a class system of non-Newtonian fluid in $\mathbb R^n$. J. Math. Phys. 41 (2000), 349-356. | DOI | MR | JFM

[6] Kang, K., Kim, J.-M.: Existence of solutions for the magnetohydrodynamics with power- law type nonlinear viscous fluid. NoDEA, Nonlinear Differ. Equ. Appl. 26 (2019), Article ID 11, 24 pages. | DOI | MR | JFM

[7] Karch, G., Pilarczyk, D.: Asymptotic stability of Landau solutions to Navier-Stokes system. Arch. Ration. Mech. Anal. 202 (2011), 115-131. | DOI | MR | JFM

[8] Karch, G., Pilarczyk, D., Schonbek, M. E.: $L^2$-asymptotic stability of singular solutions to the Navier-Stokes system of equations in $\mathbb{R}^3$. J. Math. Pures Appl. (9) 108 (2017), 14-40. | DOI | MR | JFM

[9] Kim, J.-M.: Temporal decay of strong solutions to the magnetohydrodynamics with power-law type nonlinear viscous fluid. J. Math. Phys. 61 (2020), Article ID 011504, 6 pages. | DOI | MR | JFM

[10] Kim, J.-M.: Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Math. 6 (2021), 13423-13431. | DOI | MR | JFM

[11] Kozono, H.: Asymptotic stability of large solutions with large perturbation to the Navier-Stokes equations. J. Funct. Anal. 176 (2000), 153-197. | DOI | MR | JFM

[12] Miyakawa, T.: On upper and lower bounds of rates of decay for nonstationary Navier- Stokes flows in the whole space. Hiroshima Math. J. 32 (2002), 431-462. | DOI | MR | JFM

[13] Nečasová, Š., Penel, P.: $L^2$ decay for weak solution to equations of non-Newtonian incompressible fluids in the whole space. Nonlinear Anal., Theory Methods Appl., Ser. A 47 (2001), 4181-4191. | DOI | MR | JFM

[14] Oliver, M., Titi, E. S.: Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in $\mathbb R^n$. J. Funct. Anal. 172 (2000), 1-18. | DOI | MR | JFM

[15] Samokhin, V. N.: A magnetohydrodynamic-equation system for a nonlinearly viscous liquid. Differ. Equations 27 (1991), 628-636 translation from Differ. Uravn. 27 1991 886-896. | MR | JFM

[16] Schonbek, M. E.: Large time behaviour of solutions to the Navier-Stokes equations. Commun. Partial Differ. Equations 11 (1986), 733-763. | DOI | MR | JFM

[17] Secchi, P.: $L^2$ stability for weak solutions of the Navier-Stokes equations in $\mathbb R^3$. Indiana Univ. Math. J. 36 (1987), 685-691. | DOI | MR | JFM

[18] Wiegner, M.: Decay results for weak solutions of the Navier-Stokes equations on $\mathbb R^n$. J. Lond. Math. Soc., II. Ser. 35 (1987), 303-313. | DOI | MR | JFM

[19] Wilkinson, W. L.: Non-Newtonian Fluids: Fluid Mechanics, Mixing and Heat Transfer. International Series of Monographs on Chemical Engineering 1. Pergamon Press, New York (1960). | MR | JFM

[20] Xie, Q., Guo, Y., Dong, B.-Q.: Upper and lower convergence rates for weak solutions of the 3D non-Newtonian flows. J. Math. Anal. Appl. 494 (2021), Article ID 124641, 21 pages. | DOI | MR | JFM

[21] Zhou, Y.: Asymptotic stability for the 3D Navier-Stokes equations. Commun. Partial Differ. Equations 30 (2005), 323-333. | DOI | MR | JFM

[22] Zhou, Y.: Asymptotic stability for the Navier-Stokes equations in $L^n$. Z. Angew. Math. Phys. 60 (2009), 191-204. | DOI | MR | JFM

Cité par Sources :