On optimal parameters involved with two-weighted estimates of commutators of singular and fractional operators with Lipschitz symbols
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 733-754
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove two-weighted norm estimates for higher order commutator of singular integral and fractional type operators between weighted $L^p$ and certain spaces that include Lipschitz, BMO and Morrey spaces. We also give the optimal parameters involved with these results, where the optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region out of which the classes of weights are satisfied by trivial weights. We also exhibit pairs of nontrivial weights in the optimal region satisfying the conditions required.
We prove two-weighted norm estimates for higher order commutator of singular integral and fractional type operators between weighted $L^p$ and certain spaces that include Lipschitz, BMO and Morrey spaces. We also give the optimal parameters involved with these results, where the optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region out of which the classes of weights are satisfied by trivial weights. We also exhibit pairs of nontrivial weights in the optimal region satisfying the conditions required.
DOI : 10.21136/CMJ.2023.0222-22
Classification : 42B20, 42B25, 42B35
Keywords: fractional operator; singular integral operator; commutator; weight
@article{10_21136_CMJ_2023_0222_22,
     author = {Pradolini, Gladis and Recchi, Jorgelina},
     title = {On optimal parameters involved with two-weighted estimates of commutators of singular and fractional operators with {Lipschitz} symbols},
     journal = {Czechoslovak Mathematical Journal},
     pages = {733--754},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0222-22},
     mrnumber = {4632855},
     zbl = {07729535},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0222-22/}
}
TY  - JOUR
AU  - Pradolini, Gladis
AU  - Recchi, Jorgelina
TI  - On optimal parameters involved with two-weighted estimates of commutators of singular and fractional operators with Lipschitz symbols
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 733
EP  - 754
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0222-22/
DO  - 10.21136/CMJ.2023.0222-22
LA  - en
ID  - 10_21136_CMJ_2023_0222_22
ER  - 
%0 Journal Article
%A Pradolini, Gladis
%A Recchi, Jorgelina
%T On optimal parameters involved with two-weighted estimates of commutators of singular and fractional operators with Lipschitz symbols
%J Czechoslovak Mathematical Journal
%D 2023
%P 733-754
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0222-22/
%R 10.21136/CMJ.2023.0222-22
%G en
%F 10_21136_CMJ_2023_0222_22
Pradolini, Gladis; Recchi, Jorgelina. On optimal parameters involved with two-weighted estimates of commutators of singular and fractional operators with Lipschitz symbols. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 733-754. doi: 10.21136/CMJ.2023.0222-22

[1] Bramanti, M., Cerutti, M. C.: $W_p^{1,2}$ solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients. Commun. Partial Differ. Equations 18 (1993), 1735-1763. | DOI | MR | JFM

[2] Bramanti, M., Cerutti, M. C.: Commutators of singular integrals and fractional integrals on homogeneous spaces. Harmonic Analysis and Operator Theory Contemporary Mathematics 189. AMS, Providence (1995), 81-94. | DOI | MR | JFM

[3] Bramanti, M., Cerutti, M. C.: Commutators of singular integrals on homogeneous spaces. Boll. Unione Mat. Ital., VII. Ser., B 10 (1996), 843-883. | MR | JFM

[4] Bramanti, M., Cerutti, M. C., Manfredini, M.: $L^p$ estimates for some ultraparabolic operators with discontinuous coefficients. J. Math. Anal. Appl. 200 (1996), 332-354. | DOI | MR | JFM

[5] Chiarenza, F., Frasca, M., Longo, P.: Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients. Ric. Mat. 40 (1991), 149-168. | MR | JFM

[6] Chiarenza, F., Frasca, M., Longo, P.: $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 336 (1993), 841-853. | DOI | MR | JFM

[7] Harboure, E., Salinas, O., Viviani, B.: Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces. Trans. Am. Math. Soc. 349 (1997), 235-255. | DOI | MR | JFM

[8] Morvidone, M.: Weighted $\rm BMO_\phi$ spaces and the Hilbert transform. Rev. Unión Mat. Argent. 44 (2003), 1-16. | MR | JFM

[9] Muckenhoupt, B., Wheeden, R. L.: Weighted bounded mean oscillation and the Hilbert transform. Stud. Math. 54 (1976), 221-237. | DOI | MR | JFM

[10] Pradolini, G.: A class of pairs of weights related to the boundedness of the fractional integral operator between $L^p$ and Lipschitz spaces. Commentat. Math. Univ. Carol. 42 (2001), 133-152. | MR | JFM

[11] Pradolini, G.: Two-weighted norm inequalities for the fractional integral operator between $L^p$ and Lipschitz spaces. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 41 (2001), 147-169. | MR | JFM

[12] Pradolini, G., Ramos, W., Recchi, J.: On the optimal numerical parameters related with two weighted estimates for commutators of classical operators and extrapolation results. Collect. Math. 72 (2021), 229-259. | DOI | MR | JFM

[13] Rios, C.: The $L^p$ Dirichlet problem and nondivergence harmonic measure. Trans. Am. Math. Soc. 355 (2003), 665-687. | DOI | MR | JFM

Cité par Sources :