On feebly nil-clean rings
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 87-94
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A ring $R$ is feebly nil-clean if for any $a\in R$ there exist two orthogonal idempotents $e,f\in R$ and a nilpotent $w\in R$ such that $a=e-f+w$. Let $R$ be a 2-primal feebly nil-clean ring. We prove that every matrix ring over $R$ is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.
A ring $R$ is feebly nil-clean if for any $a\in R$ there exist two orthogonal idempotents $e,f\in R$ and a nilpotent $w\in R$ such that $a=e-f+w$. Let $R$ be a 2-primal feebly nil-clean ring. We prove that every matrix ring over $R$ is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.
DOI : 10.21136/CMJ.2023.0215-22
Classification : 15A23, 15B33, 16U99
Keywords: orthogonal idempotent matrix; nilpotent matrix; matrix ring; feebly nil-clean ring
@article{10_21136_CMJ_2023_0215_22,
     author = {Sheibani Abdolyousefi, Marjan and Pouyan, Neda},
     title = {On feebly nil-clean rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {87--94},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2023.0215-22},
     mrnumber = {4717823},
     zbl = {07893368},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0215-22/}
}
TY  - JOUR
AU  - Sheibani Abdolyousefi, Marjan
AU  - Pouyan, Neda
TI  - On feebly nil-clean rings
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 87
EP  - 94
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0215-22/
DO  - 10.21136/CMJ.2023.0215-22
LA  - en
ID  - 10_21136_CMJ_2023_0215_22
ER  - 
%0 Journal Article
%A Sheibani Abdolyousefi, Marjan
%A Pouyan, Neda
%T On feebly nil-clean rings
%J Czechoslovak Mathematical Journal
%D 2024
%P 87-94
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0215-22/
%R 10.21136/CMJ.2023.0215-22
%G en
%F 10_21136_CMJ_2023_0215_22
Sheibani Abdolyousefi, Marjan; Pouyan, Neda. On feebly nil-clean rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 87-94. doi: 10.21136/CMJ.2023.0215-22

[1] Abyzov, A. N., Mukhametgaliev, I. I.: On some matrix analogs of the little Fermat theorem. Math. Notes 101 (2017), 187-192. | DOI | MR | JFM

[2] Arora, N., Kundu, S.: Commutative feebly clean rings. J. Algebra Appl. 16 (2017), Article ID 1750128, 14 pages. | DOI | MR | JFM

[3] Breaz, S., Călugăreanu, G., Danchev, P., Micu, T.: Nil-clean matrix rings. Linear Algebra Appl. 439 (2013), 3115-3119. | DOI | MR | JFM

[4] Chen, H.: Rings Related Stable Range Conditions. Series in Algebra 11. World Scientific, Hackensack (2011). | DOI | MR | JFM

[5] Chen, H., Sheibani, M.: Strongly 2-nil-clean rings. J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. | DOI | MR | JFM

[6] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. | DOI | MR | JFM

[7] Han, J., Nicholson, W. K.: Extensions of clean rings. Commun. Algebra 29 (2001), 2589-2595. | DOI | MR | JFM

[8] Hirano, Y., Tominaga, H.: Rings in which every element is a sum of two idempotents. Bull. Aust. Math. Soc. 37 (1988), 161-164. | DOI | MR | JFM

[9] Hirano, Y., Tominaga, H., Yaqub, A.: On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element. Math. J. Okayama Univ. 30 (1988), 33-40. | DOI | MR | JFM

[10] Koşan, M. T., Lee, T.-K., Zhou, Y.: When is every matrix over a division ring a sum of an idempotent and a nilpotent?. Linear Algebra Appl. 450 (2014), 7-12. | DOI | MR | JFM

[11] Koşan, T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings. J. Pure Appl. Algebra 220 (2016), 633-646. | DOI | MR | JFM

[12] Tominaga, H., Yaqub, A.: On generalized $n$-like rings and related rings. Math. J. Okayama Univ. 23 (1981), 199-202. | MR | JFM

[13] Ying, Z., Koşan, T., Zhou, Y.: Rings in which every element is a sum of two tripotents. Can. Math. Bull. 59 (2016), 661-672. | DOI | MR | JFM

[14] Yu, H.-P.: On quasi-duo rings. Glasg. Math. J. 37 (1995), 21-31. | DOI | MR | JFM

Cité par Sources :