On feebly nil-clean rings
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 87-94.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A ring $R$ is feebly nil-clean if for any $a\in R$ there exist two orthogonal idempotents $e,f\in R$ and a nilpotent $w\in R$ such that $a=e-f+w$. Let $R$ be a 2-primal feebly nil-clean ring. We prove that every matrix ring over $R$ is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.
DOI : 10.21136/CMJ.2023.0215-22
Classification : 15A23, 15B33, 16U99
Keywords: orthogonal idempotent matrix; nilpotent matrix; matrix ring; feebly nil-clean ring
@article{10_21136_CMJ_2023_0215_22,
     author = {Sheibani Abdolyousefi, Marjan and Pouyan, Neda},
     title = {On feebly nil-clean rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {87--94},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2024},
     doi = {10.21136/CMJ.2023.0215-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0215-22/}
}
TY  - JOUR
AU  - Sheibani Abdolyousefi, Marjan
AU  - Pouyan, Neda
TI  - On feebly nil-clean rings
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 87
EP  - 94
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0215-22/
DO  - 10.21136/CMJ.2023.0215-22
LA  - en
ID  - 10_21136_CMJ_2023_0215_22
ER  - 
%0 Journal Article
%A Sheibani Abdolyousefi, Marjan
%A Pouyan, Neda
%T On feebly nil-clean rings
%J Czechoslovak Mathematical Journal
%D 2024
%P 87-94
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0215-22/
%R 10.21136/CMJ.2023.0215-22
%G en
%F 10_21136_CMJ_2023_0215_22
Sheibani Abdolyousefi, Marjan; Pouyan, Neda. On feebly nil-clean rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 87-94. doi : 10.21136/CMJ.2023.0215-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0215-22/

Cité par Sources :