Sum of higher divisor function with prime summands
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 621-631
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $l\geqslant 2$ be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function $$ \sum _{1\leqslant n_{1},n_{2},\ldots ,n_{l}\leqslant x^{1/2}}\tau _{k}(n_{1}^{2}+n_{2}^{2}+\cdots +n_{l}^{2}), $$ where $\tau _{k}(n)$ represents the $k$th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum $$ \sum _{1\leqslant p_{1},p_{2},\ldots ,p_{l}\leqslant x}\tau _{k}(p_{1}+p_{2}+\cdots +p_{l}), $$ where $p_1,p_2,\dots ,p_l$ are prime variables.
Let $l\geqslant 2$ be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function $$ \sum _{1\leqslant n_{1},n_{2},\ldots ,n_{l}\leqslant x^{1/2}}\tau _{k}(n_{1}^{2}+n_{2}^{2}+\cdots +n_{l}^{2}), $$ where $\tau _{k}(n)$ represents the $k$th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum $$ \sum _{1\leqslant p_{1},p_{2},\ldots ,p_{l}\leqslant x}\tau _{k}(p_{1}+p_{2}+\cdots +p_{l}), $$ where $p_1,p_2,\dots ,p_l$ are prime variables.
DOI : 10.21136/CMJ.2023.0206-22
Classification : 11A41, 11N37, 11P55
Keywords: higher divisor function; circle method; prime
@article{10_21136_CMJ_2023_0206_22,
     author = {Ding, Yuchen and Zhou, Guang-Liang},
     title = {Sum of higher divisor function with prime summands},
     journal = {Czechoslovak Mathematical Journal},
     pages = {621--631},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2023.0206-22},
     mrnumber = {4586915},
     zbl = {07729528},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0206-22/}
}
TY  - JOUR
AU  - Ding, Yuchen
AU  - Zhou, Guang-Liang
TI  - Sum of higher divisor function with prime summands
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 621
EP  - 631
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0206-22/
DO  - 10.21136/CMJ.2023.0206-22
LA  - en
ID  - 10_21136_CMJ_2023_0206_22
ER  - 
%0 Journal Article
%A Ding, Yuchen
%A Zhou, Guang-Liang
%T Sum of higher divisor function with prime summands
%J Czechoslovak Mathematical Journal
%D 2023
%P 621-631
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0206-22/
%R 10.21136/CMJ.2023.0206-22
%G en
%F 10_21136_CMJ_2023_0206_22
Ding, Yuchen; Zhou, Guang-Liang. Sum of higher divisor function with prime summands. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 621-631. doi: 10.21136/CMJ.2023.0206-22

[1] Bellman, R.: Ramanujan sums and the average value of arithmetic functions. Duke Math. J. 17 (1950), 159-168. | DOI | MR | JFM

[2] Calderón, C., Velasco, M. J. de: On divisors of a quadratic form. Bol. Soc. Bras. Mat., Nova Sér. 31 (2000), 81-91. | DOI | MR | JFM

[3] Chace, C. E.: The divisor problem for arithmetic progressions with small modulus. Acta Arith. 61 (1992), 35-50. | DOI | MR | JFM

[4] Chace, C. E.: Writing integers as sums of products. Trans. Am. Math. Soc. 345 (1994), 367-379. | DOI | MR | JFM

[5] Gafurov, N.: On the sum of the number of divisors of a quadratic form. Dokl. Akad. Nauk Tadzh. SSR 28 (1985), 371-375 Russian. | MR | JFM

[6] Gafurov, N.: On the number of divisors of a quadratic form. Proc. Steklov Inst. Math. 200 (1993), 137-148. | MR | JFM

[7] Guo, R., Zhai, W.: Some problems about the ternary quadratic form $m_1^2+m_2^2+m_3^2$. Acta Arith. 156 (2012), 101-121. | DOI | MR | JFM

[8] Hooley, C.: On the representation of a number as the sum of a square and a product. Math. Z. 69 (1958), 211-227. | DOI | MR | JFM

[9] Hooley, C.: On the number of divisors of a quadratic polynomials. Acta Math. 110 (1963), 97-114. | DOI | MR | JFM

[10] Hu, G., Lü, G.: Sums of higher divisor functions. J. Number Theory 220 (2021), 61-74. | DOI | MR | JFM

[11] Ingham, A. E.: Some asymptotic formulae in the theory of numbers. J. Lond. Math. Soc. 2 (1927), 202-208 \99999JFM99999 53.0157.01. | DOI | MR

[12] Montgomery, H. L., Vaughan, R. C.: The exceptional set in Goldbach's problem. Acta Arith. 27 (1975), 353-370. | DOI | MR | JFM

[13] Nathanson, M. B.: Additive Number Theory: The Classical Bases. Graduate Texts in Mathematics 164. Springer, New York (1996). | DOI | MR | JFM

[14] Shiu, P.: A Brun-Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math. 313 (1980), 161-170. | DOI | MR | JFM

[15] Sun, Q., Zhang, D.: Sums of the triple divisor function over values of a ternary quadratic form. J. Number Theory 168 (2016), 215-246. | DOI | MR | JFM

[16] Zhao, L.: The sum of divisors of a quadratic form. Acta Arith. 163 (2014), 161-177. | DOI | MR | JFM

[17] Zhou, G.-L., Ding, Y.: Sums of the higher divisor function of diagonal homogeneous forms. Ramanujan J. 59 (2022), 933-945. | DOI | MR | JFM

Cité par Sources :