Keywords: micoropolar fluid; global classical solution; non-existence
@article{10_21136_CMJ_2023_0196_22,
author = {Dong, Jianwei and Zhu, Junhui and Zhang, Litao},
title = {Non-existence of global classical solutions to {1D} compressible heat-conducting micropolar fluid},
journal = {Czechoslovak Mathematical Journal},
pages = {29--43},
year = {2024},
volume = {74},
number = {1},
doi = {10.21136/CMJ.2023.0196-22},
mrnumber = {4717821},
zbl = {07893366},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0196-22/}
}
TY - JOUR AU - Dong, Jianwei AU - Zhu, Junhui AU - Zhang, Litao TI - Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid JO - Czechoslovak Mathematical Journal PY - 2024 SP - 29 EP - 43 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0196-22/ DO - 10.21136/CMJ.2023.0196-22 LA - en ID - 10_21136_CMJ_2023_0196_22 ER -
%0 Journal Article %A Dong, Jianwei %A Zhu, Junhui %A Zhang, Litao %T Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid %J Czechoslovak Mathematical Journal %D 2024 %P 29-43 %V 74 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0196-22/ %R 10.21136/CMJ.2023.0196-22 %G en %F 10_21136_CMJ_2023_0196_22
Dong, Jianwei; Zhu, Junhui; Zhang, Litao. Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 29-43. doi: 10.21136/CMJ.2023.0196-22
[1] Bašić-Šiško, A., Dražić, I.: Global solution to a one-dimensional model of viscous and heat-conducting micropolar real gas flow. J. Math. Anal. Appl. 495 (2021), Article ID 124690, 26 pages. | DOI | MR | JFM
[2] Bašić-Šiško, A., Dražić, I.: Uniqueness of generalized solution to micropolar viscous real gas flow with homogeneous boundary conditions. Math. Methods Appl. Sci. 44 (2021), 4330-4341. | DOI | MR | JFM
[3] Bašić-Šiško, A., Dražić, I.: Local existence for viscous reactive micropolar real gas flow and thermal explosion with homogeneous boundary conditions. J. Math. Anal. Appl. 509 (2022), Article ID 125988, 31 pages. | DOI | MR | JFM
[4] Bašić-Šiško, A., Dražić, I., Simčić, L.: One-dimensional model and numerical solution to the viscous and heat-conducting micropolar real gas flow with homogeneous boundary conditions. Math. Comput. Simul. 195 (2022), 71-87. | DOI | MR | JFM
[5] Chang, S., Duan, R.: The limits of coefficients of angular viscosity and microrotation viscosity to one-dimensional compressible Navier-Stokes equations for micropolar fluids model. J. Math. Anal. Appl. 516 (2022), Article ID 126462, 41 pages. | DOI | MR | JFM
[6] Cui, H., Yin, H.: Stationary solutions to the one-dimensional micropolar fluid model in a half line: Existence, stability and convergence rate. J. Math. Anal. Appl. 449 (2017), 464-489. | DOI | MR | JFM
[7] Dong, J., Ju, Q.: Blow-up of smooth solutions to compressible quantum Navier-Stokes equations. Sci. Sin., Math. 50 (2020), 873-884 Chinese. | DOI | JFM
[8] Dong, J., Xue, H., Lou, G.: Singularities of solutions to compressible Euler equations with damping. Eur. J. Mech., B, Fluids 76 (2019), 272-275. | DOI | MR | JFM
[9] Dong, J., Zhu, J., Wang, Y.: Blow-up for the compressible isentropic Navier-Stokes- Poisson equations. Czech. Math. J. 70 (2020), 9-19. | DOI | MR | JFM
[10] Dong, J., Zhu, J., Xue, H.: Blow-up of smooth solutions to the Cauchy problem for the viscous two-phase model. Math. Phys. Anal. Geom. 21 (2018), Article ID 20, 8 pages. | DOI | MR | JFM
[11] Duan, R.: Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity. J. Math. Anal. Appl. 463 (2018), 477-495. | DOI | MR | JFM
[12] Duan, R.: Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity. Nonlinear Anal., Real World Appl. 42 (2018), 71-92. | DOI | MR | JFM
[13] Eringen, A. C.: Theory of micropolar fluids. J. Math. Mech. 16 (1966), 1-18. | DOI | MR
[14] Feng, Z., Zhu, C.: Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete Contin. Dyn. Syst. 39 (2019), 3069-3097. | DOI | MR | JFM
[15] Gao, J., Cui, H.: Large-time behavior of solutions to the inflow problem of the non-isentropic micropolar fluid model. Acta Math. Sci., Ser. B, Engl. Ed. 41 (2021), 1169-1195. | DOI | MR | JFM
[16] Huang, L., Yang, X.-G., Lu, Y., Wang, T.: Global attractors for a nonlinear one-dimensional compressible viscous micropolar fluid model. Z. Angew. Math. Phys. 70 (2019), Article ID 40, 20 pages. | DOI | MR | JFM
[17] Jiu, Q., Wang, Y., Xin, Z.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities. J. Differ. Equations 259 (2015), 2981-3003. | DOI | MR | JFM
[18] {Ł}ukaszewicz, G.: Micropolar Fluids: Theory and Applications. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1999). | DOI | MR | JFM
[19] Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem. Glas. Mat., III. Ser. 33 (1998), 71-91. | MR | JFM
[20] Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem. Glas. Mat., III. Ser. 33 (1998), 199-208. | MR | JFM
[21] Mujaković, N.: Global in time estimates for one-dimensional compressible viscous micropolar fluid model. Glas. Mat., III. Ser. 40 (2005), 103-120. | DOI | MR | JFM
[22] Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: The Cauchy problem. Math. Commun. 10 (2005), 1-14. | MR | JFM
[23] Mujaković, N.: Uniqueness of a solution of the Cauchy problem for one-dimensional compressible viscous micropolar fluid model. Appl. Math. E-Notes 6 (2006), 113-118. | MR | JFM
[24] Mujaković, N.: Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A local existence theorem. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 53 (2007), 361-379. | DOI | MR | JFM
[25] Mujaković, N.: Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A global existence theorem. Math. Inequal. Appl. 12 (2009), 651-662. | DOI | MR | JFM
[26] Mujaković, N.: 1-D compressible viscous micropolar fluid model with non-homogeneous boundary conditons for temperature: A local existence theorem. Nonlinear Anal., Real World Appl. 13 (2012), 1844-1853. | DOI | MR | JFM
[27] Mujaković, N.: The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature. Nonlinear Anal., Real World Appl. 19 (2014), 19-30. | DOI | MR | JFM
[28] Mujaković, N., Črnjarić-Žic, N.: Convergent finite difference scheme for 1D flow of compressible micropolar fluid. Int. J. Numer. Anal. Model. 12 (2015), 94-124. | MR | JFM
[29] Qin, Y., Wang, T., Hu, G.: The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity. Nonlinear Anal., Real World Appl. 13 (2012), 1010-1029. | DOI | MR | JFM
[30] Sideris, T. C.: Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys. 101 (1985), 475-485. | DOI | MR | JFM
[31] Wang, G., Guo, B., Fang, S.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations. Math. Methods Appl. Sci. 40 (2017), 5262-5272. | DOI | MR | JFM
[32] Xin, Z.: Blowup of smooth solutions to the compressible Navier-Stokes equations with compact density. Commun. Pure Appl. Math. 51 (1998), 229-240. | DOI | MR | JFM
[33] Xin, Z., Yan, W.: On blowup of classical solutions to the compressible Navier-Stokes equations. Commun. Math. Phys. 321 (2013), 529-541. | DOI | MR | JFM
Cité par Sources :