Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 29-43
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid without viscosity. We first show that the life span of the classical solutions with decay at far fields must be finite for the 1D Cauchy problem if the initial momentum weight is positive. Then, we present several sufficient conditions for the non-existence of global classical solutions to the 1D initial-boundary value problem on $[0,1]$. To prove these results, some new average quantities are introduced.
We study the non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid without viscosity. We first show that the life span of the classical solutions with decay at far fields must be finite for the 1D Cauchy problem if the initial momentum weight is positive. Then, we present several sufficient conditions for the non-existence of global classical solutions to the 1D initial-boundary value problem on $[0,1]$. To prove these results, some new average quantities are introduced.
DOI : 10.21136/CMJ.2023.0196-22
Classification : 35B44, 35Q35
Keywords: micoropolar fluid; global classical solution; non-existence
@article{10_21136_CMJ_2023_0196_22,
     author = {Dong, Jianwei and Zhu, Junhui and Zhang, Litao},
     title = {Non-existence of global classical solutions to {1D} compressible heat-conducting micropolar fluid},
     journal = {Czechoslovak Mathematical Journal},
     pages = {29--43},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2023.0196-22},
     mrnumber = {4717821},
     zbl = {07893366},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0196-22/}
}
TY  - JOUR
AU  - Dong, Jianwei
AU  - Zhu, Junhui
AU  - Zhang, Litao
TI  - Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 29
EP  - 43
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0196-22/
DO  - 10.21136/CMJ.2023.0196-22
LA  - en
ID  - 10_21136_CMJ_2023_0196_22
ER  - 
%0 Journal Article
%A Dong, Jianwei
%A Zhu, Junhui
%A Zhang, Litao
%T Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid
%J Czechoslovak Mathematical Journal
%D 2024
%P 29-43
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0196-22/
%R 10.21136/CMJ.2023.0196-22
%G en
%F 10_21136_CMJ_2023_0196_22
Dong, Jianwei; Zhu, Junhui; Zhang, Litao. Non-existence of global classical solutions to 1D compressible heat-conducting micropolar fluid. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 29-43. doi: 10.21136/CMJ.2023.0196-22

[1] Bašić-Šiško, A., Dražić, I.: Global solution to a one-dimensional model of viscous and heat-conducting micropolar real gas flow. J. Math. Anal. Appl. 495 (2021), Article ID 124690, 26 pages. | DOI | MR | JFM

[2] Bašić-Šiško, A., Dražić, I.: Uniqueness of generalized solution to micropolar viscous real gas flow with homogeneous boundary conditions. Math. Methods Appl. Sci. 44 (2021), 4330-4341. | DOI | MR | JFM

[3] Bašić-Šiško, A., Dražić, I.: Local existence for viscous reactive micropolar real gas flow and thermal explosion with homogeneous boundary conditions. J. Math. Anal. Appl. 509 (2022), Article ID 125988, 31 pages. | DOI | MR | JFM

[4] Bašić-Šiško, A., Dražić, I., Simčić, L.: One-dimensional model and numerical solution to the viscous and heat-conducting micropolar real gas flow with homogeneous boundary conditions. Math. Comput. Simul. 195 (2022), 71-87. | DOI | MR | JFM

[5] Chang, S., Duan, R.: The limits of coefficients of angular viscosity and microrotation viscosity to one-dimensional compressible Navier-Stokes equations for micropolar fluids model. J. Math. Anal. Appl. 516 (2022), Article ID 126462, 41 pages. | DOI | MR | JFM

[6] Cui, H., Yin, H.: Stationary solutions to the one-dimensional micropolar fluid model in a half line: Existence, stability and convergence rate. J. Math. Anal. Appl. 449 (2017), 464-489. | DOI | MR | JFM

[7] Dong, J., Ju, Q.: Blow-up of smooth solutions to compressible quantum Navier-Stokes equations. Sci. Sin., Math. 50 (2020), 873-884 Chinese. | DOI | JFM

[8] Dong, J., Xue, H., Lou, G.: Singularities of solutions to compressible Euler equations with damping. Eur. J. Mech., B, Fluids 76 (2019), 272-275. | DOI | MR | JFM

[9] Dong, J., Zhu, J., Wang, Y.: Blow-up for the compressible isentropic Navier-Stokes- Poisson equations. Czech. Math. J. 70 (2020), 9-19. | DOI | MR | JFM

[10] Dong, J., Zhu, J., Xue, H.: Blow-up of smooth solutions to the Cauchy problem for the viscous two-phase model. Math. Phys. Anal. Geom. 21 (2018), Article ID 20, 8 pages. | DOI | MR | JFM

[11] Duan, R.: Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity. J. Math. Anal. Appl. 463 (2018), 477-495. | DOI | MR | JFM

[12] Duan, R.: Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity. Nonlinear Anal., Real World Appl. 42 (2018), 71-92. | DOI | MR | JFM

[13] Eringen, A. C.: Theory of micropolar fluids. J. Math. Mech. 16 (1966), 1-18. | DOI | MR

[14] Feng, Z., Zhu, C.: Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete Contin. Dyn. Syst. 39 (2019), 3069-3097. | DOI | MR | JFM

[15] Gao, J., Cui, H.: Large-time behavior of solutions to the inflow problem of the non-isentropic micropolar fluid model. Acta Math. Sci., Ser. B, Engl. Ed. 41 (2021), 1169-1195. | DOI | MR | JFM

[16] Huang, L., Yang, X.-G., Lu, Y., Wang, T.: Global attractors for a nonlinear one-dimensional compressible viscous micropolar fluid model. Z. Angew. Math. Phys. 70 (2019), Article ID 40, 20 pages. | DOI | MR | JFM

[17] Jiu, Q., Wang, Y., Xin, Z.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities. J. Differ. Equations 259 (2015), 2981-3003. | DOI | MR | JFM

[18] {Ł}ukaszewicz, G.: Micropolar Fluids: Theory and Applications. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1999). | DOI | MR | JFM

[19] Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem. Glas. Mat., III. Ser. 33 (1998), 71-91. | MR | JFM

[20] Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem. Glas. Mat., III. Ser. 33 (1998), 199-208. | MR | JFM

[21] Mujaković, N.: Global in time estimates for one-dimensional compressible viscous micropolar fluid model. Glas. Mat., III. Ser. 40 (2005), 103-120. | DOI | MR | JFM

[22] Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: The Cauchy problem. Math. Commun. 10 (2005), 1-14. | MR | JFM

[23] Mujaković, N.: Uniqueness of a solution of the Cauchy problem for one-dimensional compressible viscous micropolar fluid model. Appl. Math. E-Notes 6 (2006), 113-118. | MR | JFM

[24] Mujaković, N.: Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A local existence theorem. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 53 (2007), 361-379. | DOI | MR | JFM

[25] Mujaković, N.: Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A global existence theorem. Math. Inequal. Appl. 12 (2009), 651-662. | DOI | MR | JFM

[26] Mujaković, N.: 1-D compressible viscous micropolar fluid model with non-homogeneous boundary conditons for temperature: A local existence theorem. Nonlinear Anal., Real World Appl. 13 (2012), 1844-1853. | DOI | MR | JFM

[27] Mujaković, N.: The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature. Nonlinear Anal., Real World Appl. 19 (2014), 19-30. | DOI | MR | JFM

[28] Mujaković, N., Črnjarić-Žic, N.: Convergent finite difference scheme for 1D flow of compressible micropolar fluid. Int. J. Numer. Anal. Model. 12 (2015), 94-124. | MR | JFM

[29] Qin, Y., Wang, T., Hu, G.: The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity. Nonlinear Anal., Real World Appl. 13 (2012), 1010-1029. | DOI | MR | JFM

[30] Sideris, T. C.: Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys. 101 (1985), 475-485. | DOI | MR | JFM

[31] Wang, G., Guo, B., Fang, S.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations. Math. Methods Appl. Sci. 40 (2017), 5262-5272. | DOI | MR | JFM

[32] Xin, Z.: Blowup of smooth solutions to the compressible Navier-Stokes equations with compact density. Commun. Pure Appl. Math. 51 (1998), 229-240. | DOI | MR | JFM

[33] Xin, Z., Yan, W.: On blowup of classical solutions to the compressible Navier-Stokes equations. Commun. Math. Phys. 321 (2013), 529-541. | DOI | MR | JFM

Cité par Sources :