Keywords: two-parameter quantum group; locally finite subalgebra; adjoint action; annihilator ideal
@article{10_21136_CMJ_2023_0193_22,
author = {Wang, Yu and Li, Xiaoming},
title = {Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$},
journal = {Czechoslovak Mathematical Journal},
pages = {715--731},
year = {2023},
volume = {73},
number = {3},
doi = {10.21136/CMJ.2023.0193-22},
mrnumber = {4632854},
zbl = {07729534},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0193-22/}
}
TY - JOUR
AU - Wang, Yu
AU - Li, Xiaoming
TI - Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$
JO - Czechoslovak Mathematical Journal
PY - 2023
SP - 715
EP - 731
VL - 73
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0193-22/
DO - 10.21136/CMJ.2023.0193-22
LA - en
ID - 10_21136_CMJ_2023_0193_22
ER -
%0 Journal Article
%A Wang, Yu
%A Li, Xiaoming
%T Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$
%J Czechoslovak Mathematical Journal
%D 2023
%P 715-731
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0193-22/
%R 10.21136/CMJ.2023.0193-22
%G en
%F 10_21136_CMJ_2023_0193_22
Wang, Yu; Li, Xiaoming. Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 715-731. doi: 10.21136/CMJ.2023.0193-22
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM
[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM
[3] Benkart, G., Kang, S.-J., Lee, K.-H.: On the centre of two-parameter quantum groups. Proc. R. Soc. Edinb., Sect. A, Math. 136 (2006), 445-472. | DOI | MR | JFM
[4] Benkart, G., Witherspoon, S.: Representations of two-parameter quantum groups and Schur-Weyl duality. Hopf Algebras Lecture Notes in Pure and Applied Mathematics 237. Marcel Dekker, New York (2004), 65-92. | MR | JFM
[5] Benkart, G., Witherspoon, S.: Two-parameter quantum groups and Drinfel'd doubles. Algebr. Represent. Theory 7 (2004), 261-286. | DOI | MR | JFM
[6] Burdík, Č., Navrátil, O., Pošta, S.: The adjoint representation of quantum algebra $U_q( sl(2))$. J. Nonlinear Math. Phys. 16 (2009), 63-75. | DOI | MR | JFM
[7] Catoiu, S.: Ideals of the enveloping algebra $U( sl_2)$. J. Algebra 202 (1998), 142-177. | DOI | MR | JFM
[8] Joseph, A.: Quantum Groups and Their Primitive Ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 29. Springer, Berlin (1995). | DOI | MR | JFM
[9] Joseph, A., Letzter, G.: Local finiteness of the adjoint action for quantized enveloping algebras. J. Algebra 153 (1992), 289-318. | DOI | MR | JFM
[10] Joseph, A., Letzter, G.: Separation of variables for quantized enveloping algebras. Am. J. Math. 116 (1994), 127-177. | DOI | MR | JFM
[11] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). | DOI | MR | JFM
[12] Kolb, S., Lorenz, M., Nguyen, B., Yammine, R.: On the adjoint representation of a Hopf algebra. Proc. Edinb. Math. Soc., II. Ser. 63 (2020), 1092-1099. | DOI | MR | JFM
[13] Li, L., Zhang, P.: Quantum adjoint action for $\mathcal{U}_q( sl(2))$. Algebra Colloq. 7 (2000), 369-379. | MR | JFM
[14] Li, L., Zhang, P.: Weight property for ideals of $\mathcal{U}_q( sl(2))$. Commun. Algebra 29 (2001), 4853-4870. | DOI | MR | JFM
[15] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics 82. AMS, Providence (1993). | DOI | MR | JFM
[16] Passman, D. S.: The Algebraic Structure of Group Rings. Pure and Applied Mathematics. John Wiley & Sons, New York (1977). | MR | JFM
[17] Takeuchi, M.: A two-parameter quantization of $GL(n)$. Proc. Japan Acad., Ser. A 66 (1990), 112-114. | DOI | MR | JFM
[18] Wang, Y.: Annihilator ideals of indecomposable modules of finite-dimensional pointed Hopf algebras of rank one. Available at , 21 pages. | arXiv
[19] Wang, Y.: Classification of ideals of 8-dimensional Radford Hopf algebra. Czech. Math. J. 72 (2022), 1019-1028. | DOI | MR | JFM
[20] Wang, Y., Wang, Z., Li, L.: Ideals of finite-dimensional pointed Hopf algebras of rank one. Algebra Colloq. 28 (2021), 351-360. | DOI | MR | JFM
[21] Wang, Y., Zheng, Y., Li, L.: On the ideals of the Radford Hopf algebras. Commun. Algebra 49 (2021), 4109-4122. | DOI | MR | JFM
Cité par Sources :