Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 715-731
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $U$ be the two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$ and $F(U)$ the locally finite subalgebra of $U$ under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of $F(U)$ in the case when $rs^{-1}$ is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of $U$ by generators.
Let $U$ be the two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$ and $F(U)$ the locally finite subalgebra of $U$ under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of $F(U)$ in the case when $rs^{-1}$ is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of $U$ by generators.
DOI : 10.21136/CMJ.2023.0193-22
Classification : 16D25, 20G42
Keywords: two-parameter quantum group; locally finite subalgebra; adjoint action; annihilator ideal
@article{10_21136_CMJ_2023_0193_22,
     author = {Wang, Yu and Li, Xiaoming},
     title = {Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {715--731},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0193-22},
     mrnumber = {4632854},
     zbl = {07729534},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0193-22/}
}
TY  - JOUR
AU  - Wang, Yu
AU  - Li, Xiaoming
TI  - Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 715
EP  - 731
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0193-22/
DO  - 10.21136/CMJ.2023.0193-22
LA  - en
ID  - 10_21136_CMJ_2023_0193_22
ER  - 
%0 Journal Article
%A Wang, Yu
%A Li, Xiaoming
%T Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$
%J Czechoslovak Mathematical Journal
%D 2023
%P 715-731
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0193-22/
%R 10.21136/CMJ.2023.0193-22
%G en
%F 10_21136_CMJ_2023_0193_22
Wang, Yu; Li, Xiaoming. Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 715-731. doi: 10.21136/CMJ.2023.0193-22

[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM

[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM

[3] Benkart, G., Kang, S.-J., Lee, K.-H.: On the centre of two-parameter quantum groups. Proc. R. Soc. Edinb., Sect. A, Math. 136 (2006), 445-472. | DOI | MR | JFM

[4] Benkart, G., Witherspoon, S.: Representations of two-parameter quantum groups and Schur-Weyl duality. Hopf Algebras Lecture Notes in Pure and Applied Mathematics 237. Marcel Dekker, New York (2004), 65-92. | MR | JFM

[5] Benkart, G., Witherspoon, S.: Two-parameter quantum groups and Drinfel'd doubles. Algebr. Represent. Theory 7 (2004), 261-286. | DOI | MR | JFM

[6] Burdík, Č., Navrátil, O., Pošta, S.: The adjoint representation of quantum algebra $U_q( sl(2))$. J. Nonlinear Math. Phys. 16 (2009), 63-75. | DOI | MR | JFM

[7] Catoiu, S.: Ideals of the enveloping algebra $U( sl_2)$. J. Algebra 202 (1998), 142-177. | DOI | MR | JFM

[8] Joseph, A.: Quantum Groups and Their Primitive Ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 29. Springer, Berlin (1995). | DOI | MR | JFM

[9] Joseph, A., Letzter, G.: Local finiteness of the adjoint action for quantized enveloping algebras. J. Algebra 153 (1992), 289-318. | DOI | MR | JFM

[10] Joseph, A., Letzter, G.: Separation of variables for quantized enveloping algebras. Am. J. Math. 116 (1994), 127-177. | DOI | MR | JFM

[11] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). | DOI | MR | JFM

[12] Kolb, S., Lorenz, M., Nguyen, B., Yammine, R.: On the adjoint representation of a Hopf algebra. Proc. Edinb. Math. Soc., II. Ser. 63 (2020), 1092-1099. | DOI | MR | JFM

[13] Li, L., Zhang, P.: Quantum adjoint action for $\mathcal{U}_q( sl(2))$. Algebra Colloq. 7 (2000), 369-379. | MR | JFM

[14] Li, L., Zhang, P.: Weight property for ideals of $\mathcal{U}_q( sl(2))$. Commun. Algebra 29 (2001), 4853-4870. | DOI | MR | JFM

[15] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics 82. AMS, Providence (1993). | DOI | MR | JFM

[16] Passman, D. S.: The Algebraic Structure of Group Rings. Pure and Applied Mathematics. John Wiley & Sons, New York (1977). | MR | JFM

[17] Takeuchi, M.: A two-parameter quantization of $GL(n)$. Proc. Japan Acad., Ser. A 66 (1990), 112-114. | DOI | MR | JFM

[18] Wang, Y.: Annihilator ideals of indecomposable modules of finite-dimensional pointed Hopf algebras of rank one. Available at , 21 pages. | arXiv

[19] Wang, Y.: Classification of ideals of 8-dimensional Radford Hopf algebra. Czech. Math. J. 72 (2022), 1019-1028. | DOI | MR | JFM

[20] Wang, Y., Wang, Z., Li, L.: Ideals of finite-dimensional pointed Hopf algebras of rank one. Algebra Colloq. 28 (2021), 351-360. | DOI | MR | JFM

[21] Wang, Y., Zheng, Y., Li, L.: On the ideals of the Radford Hopf algebras. Commun. Algebra 49 (2021), 4109-4122. | DOI | MR | JFM

Cité par Sources :