Equivariant one-parameter deformations of associative algebra morphisms
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 675-694
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce equivariant formal deformation theory of associative algebra morphisms. We also present an equivariant deformation cohomology of associative algebra morphisms and using this we study the equivariant formal deformation theory of associative algebra morphisms. We discuss some examples of equivariant deformations and use the Maurer-Cartan equation to characterize equivariant deformations.
We introduce equivariant formal deformation theory of associative algebra morphisms. We also present an equivariant deformation cohomology of associative algebra morphisms and using this we study the equivariant formal deformation theory of associative algebra morphisms. We discuss some examples of equivariant deformations and use the Maurer-Cartan equation to characterize equivariant deformations.
DOI : 10.21136/CMJ.2023.0171-22
Classification : 16E40, 16S80, 55N91
Keywords: group action; Hochschild cohomology; equivariant formal deformation; equivariant cohomology
@article{10_21136_CMJ_2023_0171_22,
     author = {Yadav, Raj Bhawan},
     title = {Equivariant one-parameter deformations of associative algebra morphisms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {675--694},
     year = {2023},
     volume = {73},
     number = {3},
     doi = {10.21136/CMJ.2023.0171-22},
     mrnumber = {4632852},
     zbl = {07729532},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0171-22/}
}
TY  - JOUR
AU  - Yadav, Raj Bhawan
TI  - Equivariant one-parameter deformations of associative algebra morphisms
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 675
EP  - 694
VL  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0171-22/
DO  - 10.21136/CMJ.2023.0171-22
LA  - en
ID  - 10_21136_CMJ_2023_0171_22
ER  - 
%0 Journal Article
%A Yadav, Raj Bhawan
%T Equivariant one-parameter deformations of associative algebra morphisms
%J Czechoslovak Mathematical Journal
%D 2023
%P 675-694
%V 73
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0171-22/
%R 10.21136/CMJ.2023.0171-22
%G en
%F 10_21136_CMJ_2023_0171_22
Yadav, Raj Bhawan. Equivariant one-parameter deformations of associative algebra morphisms. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 3, pp. 675-694. doi: 10.21136/CMJ.2023.0171-22

[1] Frégier, Y.: A new cohomology theory associated to deformations of Lie algebra morphisms. Lett. Math. Phys. 70 (2004), 97-107. | DOI | MR | JFM

[2] Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. (2) 78 (1963), 267-288. | DOI | MR | JFM

[3] Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. (2) 79 (1964), 59-103. | DOI | MR | JFM

[4] Gerstenhaber, M.: On the deformation of rings and algebras. II. Ann. Math. (2) 84 (1966), 1-19. | DOI | MR | JFM

[5] Gerstenhaber, M.: On the deformation of rings and algebras. III. Ann. Math. (2) 88 (1968), 1-34. | DOI | MR | JFM

[6] Gerstenhaber, M.: On the deformation of rings and algebras. IV. Ann. Math. (2) 99 (1974), 257-276. | DOI | MR | JFM

[7] Gerstenhaber, M., Schack, S. D.: On the deformation of algebra morphisms and diagrams. Trans. Am. Math. Soc. 279 (1983), 1-50. | DOI | MR | JFM

[8] Gerstenhaber, M., Schack, S. D.: On the cohomology of an algebra morphism. J. Algebra 95 (1985), 245-262. | DOI | MR | JFM

[9] Kodaira, K., Spencer, D. C.: On deformations of complex analytic structures. I. Ann. Math. (2) 67 (1958), 328-401. | DOI | MR | JFM

[10] Kodaira, K., Spencer, D. C.: On deformations of complex analytic structures. II. Ann. Math. (2) 67 (1958), 403-466. | DOI | MR | JFM

[11] Kodaira, K., Spencer, D. C.: On deformations of complex analytic structures. III: Stability theorems for complex structures. Ann. Math. (2) 71 (1960), 43-76. | DOI | MR | JFM

[12] Majumdar, A., Mukherjee, G.: Deformation theory of dialgebras. $K$-Theory 27 (2002), 33-60. | DOI | MR | JFM

[13] Mandal, A.: Deformation of Leibniz algebra morphisms. Homology Homotopy Appl. 9 (2007), 439-450. | DOI | MR | JFM

[14] Mukherjee, G., Yadav, R. B.: Equivariant one-parameter deformations of associative algebras. J. Algebra Appl. 19 (2020), Article ID 2050114, 18 pages. | DOI | MR | JFM

[15] A. Nijenhuis, R. W. Richardson, Jr.: Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 72 (1966), 1-29. | DOI | MR | JFM

[16] A. Nijenhuis, R. W. Richardson, Jr.: Deformations of homomorphisms of Lie groups and Lie algebras. Bull. Am. Math. Soc. 73 (1967), 175-179. | DOI | MR | JFM

[17] Yau, D.: Deformation theory of dialgebra morphisms. Algebra Colloq. 15 (2008), 279-292. | DOI | MR | JFM

Cité par Sources :