Some properties of generalized distance eigenvalues of graphs
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 1-15
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a simple connected graph with vertex set $V(G)=\{v_1,v_2,\dots ,v_n \}$ and edge set $E(G)$, and let $d_{v_{i}}$ be the degree of the vertex $v_i$. Let $D(G)$ be the distance matrix and let $T_r(G)$ be the diagonal matrix of the vertex transmissions of $G$. The generalized distance matrix of $G$ is defined as $D_\alpha (G)=\alpha T_r(G)+(1-\alpha )D(G)$, where $0\leq \alpha \leq 1$. Let $\lambda _1(D_{\alpha }(G))\geq \lambda _2(D_{\alpha }(G)) \geq \ldots \geq \lambda _n(D_{\alpha }(G))$ be the generalized distance eigenvalues of $G$, and let $k$ be an integer with $1\leq k\leq n$. We denote by $S_{k}(D_{\alpha }(G))=\lambda _{1}(D_{\alpha }(G)) +\lambda _{2}(D_{\alpha }(G))+\ldots +\lambda _{k}(D_{\alpha }(G))$ the sum of the $k$ largest generalized distance eigenvalues. The generalized distance spread of a graph $G$ is defined as $D_{\alpha }S(G)=\lambda _{1}(D_{\alpha }(G))-\lambda _{n}(D_{\alpha }(G))$. We obtain some bounds on $S_k((D_{\alpha }(G)))$ and $D_{\alpha }S(G)$ of graph $G$, respectively.
Let $G$ be a simple connected graph with vertex set $V(G)=\{v_1,v_2,\dots ,v_n \}$ and edge set $E(G)$, and let $d_{v_{i}}$ be the degree of the vertex $v_i$. Let $D(G)$ be the distance matrix and let $T_r(G)$ be the diagonal matrix of the vertex transmissions of $G$. The generalized distance matrix of $G$ is defined as $D_\alpha (G)=\alpha T_r(G)+(1-\alpha )D(G)$, where $0\leq \alpha \leq 1$. Let $\lambda _1(D_{\alpha }(G))\geq \lambda _2(D_{\alpha }(G)) \geq \ldots \geq \lambda _n(D_{\alpha }(G))$ be the generalized distance eigenvalues of $G$, and let $k$ be an integer with $1\leq k\leq n$. We denote by $S_{k}(D_{\alpha }(G))=\lambda _{1}(D_{\alpha }(G)) +\lambda _{2}(D_{\alpha }(G))+\ldots +\lambda _{k}(D_{\alpha }(G))$ the sum of the $k$ largest generalized distance eigenvalues. The generalized distance spread of a graph $G$ is defined as $D_{\alpha }S(G)=\lambda _{1}(D_{\alpha }(G))-\lambda _{n}(D_{\alpha }(G))$. We obtain some bounds on $S_k((D_{\alpha }(G)))$ and $D_{\alpha }S(G)$ of graph $G$, respectively.
DOI : 10.21136/CMJ.2023.0136-21
Classification : 05C12, 05C50, 15A18
Keywords: graph; generalized distance matrix; generalized distance eigenvalue; generalized distance spread
@article{10_21136_CMJ_2023_0136_21,
     author = {Ma, Yuzheng and Shao, Yanling},
     title = {Some properties of generalized distance eigenvalues of graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--15},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2023.0136-21},
     mrnumber = {4717819},
     zbl = {07893364},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0136-21/}
}
TY  - JOUR
AU  - Ma, Yuzheng
AU  - Shao, Yanling
TI  - Some properties of generalized distance eigenvalues of graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1
EP  - 15
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0136-21/
DO  - 10.21136/CMJ.2023.0136-21
LA  - en
ID  - 10_21136_CMJ_2023_0136_21
ER  - 
%0 Journal Article
%A Ma, Yuzheng
%A Shao, Yanling
%T Some properties of generalized distance eigenvalues of graphs
%J Czechoslovak Mathematical Journal
%D 2024
%P 1-15
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0136-21/
%R 10.21136/CMJ.2023.0136-21
%G en
%F 10_21136_CMJ_2023_0136_21
Ma, Yuzheng; Shao, Yanling. Some properties of generalized distance eigenvalues of graphs. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 1-15. doi: 10.21136/CMJ.2023.0136-21

[1] Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers. J. Comb. Theory, Ser. A 29 (1980), 354-360. | DOI | MR | JFM

[2] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 439 (2013), 21-33. | DOI | MR | JFM

[3] Aouchiche, M., Hansen, P.: Distance spectra of graphs: A survey. Linear Algebra Appl. 458 (2014), 301-386. | DOI | MR | JFM

[4] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext. Springer, Berlin (2012). | DOI | MR | JFM

[5] Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Redwood (1990). | MR | JFM

[6] Cui, S.-Y., He, J.-X., Tian, G.-X.: The generalized distance matrix. Linear Algebra Appl. 563 (2019), 1-23. | DOI | MR | JFM

[7] Cui, S.-Y., Tian, G.-X., Zheng, L.: On the generalized distance spectral radius of graphs. Available at , 13 pages. | arXiv | DOI

[8] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 432 (2010), 2214-2221. | DOI | MR | JFM

[9] Johnson, C. R., Kumar, R., Wolkowicz, H.: Lower bounds for the spread of a matrix. Linear Algebra Appl. 71 (1985), 161-173. | DOI | MR | JFM

[10] Li, X., Mohapatra, E. N., Rodriguez, R. S.: Grüss-type inequalities. J. Math. Anal. Appl. 267 (2002), 434-443. | DOI | MR | JFM

[11] Lin, H.: On the sum of $k$ largest distance eigenvalues of graphs. Discrete Appl. Math. 259 (2019), 153-159. | DOI | MR | JFM

[12] Merikoski, J. K., Kumar, R.: Characterizations and lower bounds for the spread of a normal matrix. Linear Algebra Appl. 364 (2003), 13-31. | DOI | MR | JFM

[13] Mirsky, L.: The spread of a matrix. Mathematica, Lond. 3 (1956), 127-130. | DOI | MR | JFM

[14] Pachpatte, B. G.: Analytic Inequalities: Recent Advances. Atlantis Studies in Mathematics 3. Atlantis Press, Paris (2012). | DOI | MR | JFM

[15] Parlett, B. N.: The Symmetric Eigenvalue Problem. Classics in Applied Mathematics 20. SIAM, Philadelphia (1998). | DOI | MR | JFM

[16] Pirzada, S., Ganie, H. A., Alhevaz, A., Baghipur, M.: On spectral spread of generalized distance matrix of a graph. Linear Multilinear Algebra 70 (2022), 2819-2835. | DOI | MR | JFM

[17] Pirzada, S., Ganie, H. A., Rather, B. A., Shaban, R. Ul: On generalized distance energy of graphs. Linear Algebra Appl. 603 (2020), 1-19. | DOI | MR | JFM

[18] Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69 (1947), 17-20. | DOI

[19] You, L., Ren, L., Yu, G.: Distance and distance signless Laplacian spread of connected graphs. Discrete Appl. Math. 223 (2017), 140-147. | DOI | MR | JFM

[20] Yu, G., Zhang, H., Lin, H., Wu, Y., Shu, J.: Distance spectral spread of a graph. Discrete Appl. Math. 160 (2012), 2474-2478. | DOI | MR | JFM

Cité par Sources :