Keywords: spectrally arbitrary sign pattern; $2n$-conjecture
@article{10_21136_CMJ_2023_0132_22,
author = {Jadhav, Dipak and Deore, Rajendra},
title = {A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture},
journal = {Czechoslovak Mathematical Journal},
pages = {565--580},
year = {2023},
volume = {73},
number = {2},
doi = {10.21136/CMJ.2023.0132-22},
mrnumber = {4586911},
zbl = {07729524},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0132-22/}
}
TY - JOUR AU - Jadhav, Dipak AU - Deore, Rajendra TI - A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture JO - Czechoslovak Mathematical Journal PY - 2023 SP - 565 EP - 580 VL - 73 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0132-22/ DO - 10.21136/CMJ.2023.0132-22 LA - en ID - 10_21136_CMJ_2023_0132_22 ER -
%0 Journal Article %A Jadhav, Dipak %A Deore, Rajendra %T A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture %J Czechoslovak Mathematical Journal %D 2023 %P 565-580 %V 73 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0132-22/ %R 10.21136/CMJ.2023.0132-22 %G en %F 10_21136_CMJ_2023_0132_22
Jadhav, Dipak; Deore, Rajendra. A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 565-580. doi: 10.21136/CMJ.2023.0132-22
[1] Bergsma, H., Meulen, K. N. Vander, Tuyl, A. Van: Potentially nilpotent patterns and the Nilpotent-Jacobian method. Linear Algebra Appl. 436 (2012), 4433-4445. | DOI | MR | JFM
[2] Britz, T., McDonald, J. J., Olesky, D. D., Driessche, P. van den: Minimal spectrally arbitrary sign patterns. SIAM J. Matrix Anal. Appl. 26 (2004), 257-271. | DOI | MR | JFM
[3] Brualdi, R. A., Carmona, Á., Driessche, P. van den, Kirkland, S., Stevanović, D.: Combinatorial Matrix Theory. Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser, Cham (2018). | DOI | MR | JFM
[4] Catral, M., Olesky, D. D., Driessche, P. van den: Allow problems concerning spectral properties of sign pattern matrices : A survey. Linear Algebra Appl. 430 (2009), 3080-3094. | DOI | MR | JFM
[5] Cavers, M. S., Fallat, S. M.: Allow problems concerning spectral properties of patterns. Electron. J. Linear Algebra 23 (2012), 731-754. | DOI | MR | JFM
[6] Deaett, L., Garnett, C.: Algebraic conditions and the sparsity of spectrally arbitrary patterns. Spec. Matrices 9 (2021), 257-274. | DOI | MR | JFM
[7] Garnett, C., Shader, B. L.: A proof of the $T_n$ conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns. Linear Algebra Appl. 436 (2012), 4451-4458. | DOI | MR | JFM
[8] Hall, F. J., Li, Z.: Sign pattern matrices. Handbook of Linear Algebra Chapman and Hall/CRC, New York (2018), Chapter 33-1. | DOI
[9] Quirk, J., Ruppert, R.: Qualitative economics and the stability of equilibrium. Rev. Econ. Stud. 32 (1965), 311-326. | DOI
Cité par Sources :