A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 565-580.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to $2n$-conjecture. We determine that the $2n$-conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least $n-1$ nonzero entries.
DOI : 10.21136/CMJ.2023.0132-22
Classification : 15B35
Keywords: spectrally arbitrary sign pattern; $2n$-conjecture
@article{10_21136_CMJ_2023_0132_22,
     author = {Jadhav, Dipak and Deore, Rajendra},
     title = {A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture},
     journal = {Czechoslovak Mathematical Journal},
     pages = {565--580},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2023},
     doi = {10.21136/CMJ.2023.0132-22},
     mrnumber = {4586911},
     zbl = {07729524},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0132-22/}
}
TY  - JOUR
AU  - Jadhav, Dipak
AU  - Deore, Rajendra
TI  - A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 565
EP  - 580
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0132-22/
DO  - 10.21136/CMJ.2023.0132-22
LA  - en
ID  - 10_21136_CMJ_2023_0132_22
ER  - 
%0 Journal Article
%A Jadhav, Dipak
%A Deore, Rajendra
%T A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture
%J Czechoslovak Mathematical Journal
%D 2023
%P 565-580
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0132-22/
%R 10.21136/CMJ.2023.0132-22
%G en
%F 10_21136_CMJ_2023_0132_22
Jadhav, Dipak; Deore, Rajendra. A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 565-580. doi : 10.21136/CMJ.2023.0132-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0132-22/

Cité par Sources :