A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 565-580
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to $2n$-conjecture. We determine that the $2n$-conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least $n-1$ nonzero entries.
We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to $2n$-conjecture. We determine that the $2n$-conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least $n-1$ nonzero entries.
DOI : 10.21136/CMJ.2023.0132-22
Classification : 15B35
Keywords: spectrally arbitrary sign pattern; $2n$-conjecture
@article{10_21136_CMJ_2023_0132_22,
     author = {Jadhav, Dipak and Deore, Rajendra},
     title = {A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture},
     journal = {Czechoslovak Mathematical Journal},
     pages = {565--580},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2023.0132-22},
     mrnumber = {4586911},
     zbl = {07729524},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0132-22/}
}
TY  - JOUR
AU  - Jadhav, Dipak
AU  - Deore, Rajendra
TI  - A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 565
EP  - 580
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0132-22/
DO  - 10.21136/CMJ.2023.0132-22
LA  - en
ID  - 10_21136_CMJ_2023_0132_22
ER  - 
%0 Journal Article
%A Jadhav, Dipak
%A Deore, Rajendra
%T A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture
%J Czechoslovak Mathematical Journal
%D 2023
%P 565-580
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0132-22/
%R 10.21136/CMJ.2023.0132-22
%G en
%F 10_21136_CMJ_2023_0132_22
Jadhav, Dipak; Deore, Rajendra. A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 565-580. doi: 10.21136/CMJ.2023.0132-22

[1] Bergsma, H., Meulen, K. N. Vander, Tuyl, A. Van: Potentially nilpotent patterns and the Nilpotent-Jacobian method. Linear Algebra Appl. 436 (2012), 4433-4445. | DOI | MR | JFM

[2] Britz, T., McDonald, J. J., Olesky, D. D., Driessche, P. van den: Minimal spectrally arbitrary sign patterns. SIAM J. Matrix Anal. Appl. 26 (2004), 257-271. | DOI | MR | JFM

[3] Brualdi, R. A., Carmona, Á., Driessche, P. van den, Kirkland, S., Stevanović, D.: Combinatorial Matrix Theory. Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser, Cham (2018). | DOI | MR | JFM

[4] Catral, M., Olesky, D. D., Driessche, P. van den: Allow problems concerning spectral properties of sign pattern matrices : A survey. Linear Algebra Appl. 430 (2009), 3080-3094. | DOI | MR | JFM

[5] Cavers, M. S., Fallat, S. M.: Allow problems concerning spectral properties of patterns. Electron. J. Linear Algebra 23 (2012), 731-754. | DOI | MR | JFM

[6] Deaett, L., Garnett, C.: Algebraic conditions and the sparsity of spectrally arbitrary patterns. Spec. Matrices 9 (2021), 257-274. | DOI | MR | JFM

[7] Garnett, C., Shader, B. L.: A proof of the $T_n$ conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns. Linear Algebra Appl. 436 (2012), 4451-4458. | DOI | MR | JFM

[8] Hall, F. J., Li, Z.: Sign pattern matrices. Handbook of Linear Algebra Chapman and Hall/CRC, New York (2018), Chapter 33-1. | DOI

[9] Quirk, J., Ruppert, R.: Qualitative economics and the stability of equilibrium. Rev. Econ. Stud. 32 (1965), 311-326. | DOI

Cité par Sources :