Keywords: $S$-finite; graded-$S$-coherent module; graded-$S$-coherent ring
@article{10_21136_CMJ_2023_0130_22,
author = {Assarrar, Anass and Mahdou, Najib and Tekir, \"Unsal and Ko\c{c}, Suat},
title = {Commutative graded-$S$-coherent rings},
journal = {Czechoslovak Mathematical Journal},
pages = {553--564},
year = {2023},
volume = {73},
number = {2},
doi = {10.21136/CMJ.2023.0130-22},
mrnumber = {4586910},
zbl = {07729523},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0130-22/}
}
TY - JOUR AU - Assarrar, Anass AU - Mahdou, Najib AU - Tekir, Ünsal AU - Koç, Suat TI - Commutative graded-$S$-coherent rings JO - Czechoslovak Mathematical Journal PY - 2023 SP - 553 EP - 564 VL - 73 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0130-22/ DO - 10.21136/CMJ.2023.0130-22 LA - en ID - 10_21136_CMJ_2023_0130_22 ER -
%0 Journal Article %A Assarrar, Anass %A Mahdou, Najib %A Tekir, Ünsal %A Koç, Suat %T Commutative graded-$S$-coherent rings %J Czechoslovak Mathematical Journal %D 2023 %P 553-564 %V 73 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0130-22/ %R 10.21136/CMJ.2023.0130-22 %G en %F 10_21136_CMJ_2023_0130_22
Assarrar, Anass; Mahdou, Najib; Tekir, Ünsal; Koç, Suat. Commutative graded-$S$-coherent rings. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 553-564. doi: 10.21136/CMJ.2023.0130-22
[1] Anderson, D. D., Anderson, D. F., Chang, G. W.: Graded-valuation domains. Commun. Algebra 45 (2017), 4018-4029. | DOI | MR | JFM
[2] Anderson, D. F., Chang, G. W., Zafrullah, M.: Graded Prüfer domains. Commun. Algebra 46 (2018), 792-809. | DOI | MR | JFM
[3] Anderson, D. D., Dumitrescu, T.: $S$-Noetherian rings. Commun. Algebra 30 (2002), 4407-4416. | DOI | MR | JFM
[4] Assarrar, A., Mahdou, N., Tekir, Ü., Koç, S.: On graded coherent-like properties in trivial ring extensions. Boll. Unione Mat. Ital. 15 (2022), 437-449. | DOI | MR | JFM
[5] Bakkari, C., Mahdou, N., Riffi, A.: Commutative graded-coherent rings. Indian J. Math. 61 (2019), 421-440. | MR | JFM
[6] Bakkari, C., Mahdou, N., Riffi, A.: Uniformly graded-coherent rings. Quaest. Math. 44 (2021), 1371-1391. | DOI | MR | JFM
[7] Bennis, D., Hajoui, M. El: On $S$-coherence. J. Korean Math. Soc. 55 (2018), 1499-1512. | DOI | MR | JFM
[8] Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitres 1 à 3. Springer, Berlin (2007), French. | DOI | MR | JFM
[9] Chang, G. W., Oh, D. Y.: Discrete valuation overrings of a graded Noetherian domain. J. Commut. Algebra 10 (2018), 45-61. | DOI | MR | JFM
[10] Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. | DOI | MR | JFM
[11] Gilmer, R.: Commutative Semigroup Rings. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1984). | MR | JFM
[12] Glaz, S.: Commutative Coherent Rings. Lecture Notes in Mathematics 1371. Springer, Berlin (1989). | DOI | MR | JFM
[13] Huckaba, J. A.: Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). | MR | JFM
[14] Kim, D. K., Lim, J. W.: When are graded rings graded $S$-Noetherian rings. Mathematics 8 (2020), Article ID 1532, 11 pages. | DOI
[15] Năstăsescu, C., Oystaeyen, F. Van: Methods of Graded Rings. Lecture Notes in Mathematics 1836. Springer, Berlin (2004). | DOI | MR | JFM
[16] Rush, D. E.: Noetherian properties in monoid rings. J. Pure Appl. Algebra 185 (2003), 259-278. | DOI | MR | JFM
[17] Soublin, J.-P.: Anneaux et modules cohérents. J. Algebra 15 (1970), 455-472 French. | DOI | MR | JFM
Cité par Sources :