Commutative graded-$S$-coherent rings
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 553-564
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Recently, motivated by Anderson, Dumitrescu's $S$-finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of $S$-coherent rings, which is the $S$-version of coherent rings. Let $R= \bigoplus _{\alpha \in G} R_{\alpha }$ be a commutative ring with unity graded by an arbitrary commutative monoid $G$, and $S$ a multiplicatively closed subset of nonzero homogeneous elements of $R$. We define $R$ to be graded-$S$-coherent ring if every finitely generated homogeneous ideal of $R$ is $S$-finitely presented. The purpose of this paper is to give the graded version of several results proved in D. Bennis, M. El Hajoui (2018). We show the nontriviality of our generalization by giving an example of a graded-$S$-coherent ring which is not $S$-coherent and as a special case of our study, we give the graded version of the Chase's characterization of $S$-coherent rings.
Recently, motivated by Anderson, Dumitrescu's $S$-finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of $S$-coherent rings, which is the $S$-version of coherent rings. Let $R= \bigoplus _{\alpha \in G} R_{\alpha }$ be a commutative ring with unity graded by an arbitrary commutative monoid $G$, and $S$ a multiplicatively closed subset of nonzero homogeneous elements of $R$. We define $R$ to be graded-$S$-coherent ring if every finitely generated homogeneous ideal of $R$ is $S$-finitely presented. The purpose of this paper is to give the graded version of several results proved in D. Bennis, M. El Hajoui (2018). We show the nontriviality of our generalization by giving an example of a graded-$S$-coherent ring which is not $S$-coherent and as a special case of our study, we give the graded version of the Chase's characterization of $S$-coherent rings.
DOI : 10.21136/CMJ.2023.0130-22
Classification : 13A02, 13A15, 13D03, 16W50
Keywords: $S$-finite; graded-$S$-coherent module; graded-$S$-coherent ring
@article{10_21136_CMJ_2023_0130_22,
     author = {Assarrar, Anass and Mahdou, Najib and Tekir, \"Unsal and Ko\c{c}, Suat},
     title = {Commutative graded-$S$-coherent rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {553--564},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2023.0130-22},
     mrnumber = {4586910},
     zbl = {07729523},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0130-22/}
}
TY  - JOUR
AU  - Assarrar, Anass
AU  - Mahdou, Najib
AU  - Tekir, Ünsal
AU  - Koç, Suat
TI  - Commutative graded-$S$-coherent rings
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 553
EP  - 564
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0130-22/
DO  - 10.21136/CMJ.2023.0130-22
LA  - en
ID  - 10_21136_CMJ_2023_0130_22
ER  - 
%0 Journal Article
%A Assarrar, Anass
%A Mahdou, Najib
%A Tekir, Ünsal
%A Koç, Suat
%T Commutative graded-$S$-coherent rings
%J Czechoslovak Mathematical Journal
%D 2023
%P 553-564
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0130-22/
%R 10.21136/CMJ.2023.0130-22
%G en
%F 10_21136_CMJ_2023_0130_22
Assarrar, Anass; Mahdou, Najib; Tekir, Ünsal; Koç, Suat. Commutative graded-$S$-coherent rings. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 553-564. doi: 10.21136/CMJ.2023.0130-22

[1] Anderson, D. D., Anderson, D. F., Chang, G. W.: Graded-valuation domains. Commun. Algebra 45 (2017), 4018-4029. | DOI | MR | JFM

[2] Anderson, D. F., Chang, G. W., Zafrullah, M.: Graded Prüfer domains. Commun. Algebra 46 (2018), 792-809. | DOI | MR | JFM

[3] Anderson, D. D., Dumitrescu, T.: $S$-Noetherian rings. Commun. Algebra 30 (2002), 4407-4416. | DOI | MR | JFM

[4] Assarrar, A., Mahdou, N., Tekir, Ü., Koç, S.: On graded coherent-like properties in trivial ring extensions. Boll. Unione Mat. Ital. 15 (2022), 437-449. | DOI | MR | JFM

[5] Bakkari, C., Mahdou, N., Riffi, A.: Commutative graded-coherent rings. Indian J. Math. 61 (2019), 421-440. | MR | JFM

[6] Bakkari, C., Mahdou, N., Riffi, A.: Uniformly graded-coherent rings. Quaest. Math. 44 (2021), 1371-1391. | DOI | MR | JFM

[7] Bennis, D., Hajoui, M. El: On $S$-coherence. J. Korean Math. Soc. 55 (2018), 1499-1512. | DOI | MR | JFM

[8] Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitres 1 à 3. Springer, Berlin (2007), French. | DOI | MR | JFM

[9] Chang, G. W., Oh, D. Y.: Discrete valuation overrings of a graded Noetherian domain. J. Commut. Algebra 10 (2018), 45-61. | DOI | MR | JFM

[10] Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. | DOI | MR | JFM

[11] Gilmer, R.: Commutative Semigroup Rings. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1984). | MR | JFM

[12] Glaz, S.: Commutative Coherent Rings. Lecture Notes in Mathematics 1371. Springer, Berlin (1989). | DOI | MR | JFM

[13] Huckaba, J. A.: Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). | MR | JFM

[14] Kim, D. K., Lim, J. W.: When are graded rings graded $S$-Noetherian rings. Mathematics 8 (2020), Article ID 1532, 11 pages. | DOI

[15] Năstăsescu, C., Oystaeyen, F. Van: Methods of Graded Rings. Lecture Notes in Mathematics 1836. Springer, Berlin (2004). | DOI | MR | JFM

[16] Rush, D. E.: Noetherian properties in monoid rings. J. Pure Appl. Algebra 185 (2003), 259-278. | DOI | MR | JFM

[17] Soublin, J.-P.: Anneaux et modules cohérents. J. Algebra 15 (1970), 455-472 French. | DOI | MR | JFM

Cité par Sources :