Keywords: $n$-exangulated category; generalized Auslander-Reiten-Serre duality; restricted Auslander bijection
@article{10_21136_CMJ_2023_0127_22,
author = {He, Jian and He, Jing and Zhou, Panyue},
title = {Relative {Auslander} bijection in $n$-exangulated categories},
journal = {Czechoslovak Mathematical Journal},
pages = {525--552},
year = {2023},
volume = {73},
number = {2},
doi = {10.21136/CMJ.2023.0127-22},
mrnumber = {4586909},
zbl = {07729522},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0127-22/}
}
TY - JOUR AU - He, Jian AU - He, Jing AU - Zhou, Panyue TI - Relative Auslander bijection in $n$-exangulated categories JO - Czechoslovak Mathematical Journal PY - 2023 SP - 525 EP - 552 VL - 73 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0127-22/ DO - 10.21136/CMJ.2023.0127-22 LA - en ID - 10_21136_CMJ_2023_0127_22 ER -
%0 Journal Article %A He, Jian %A He, Jing %A Zhou, Panyue %T Relative Auslander bijection in $n$-exangulated categories %J Czechoslovak Mathematical Journal %D 2023 %P 525-552 %V 73 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0127-22/ %R 10.21136/CMJ.2023.0127-22 %G en %F 10_21136_CMJ_2023_0127_22
He, Jian; He, Jing; Zhou, Panyue. Relative Auslander bijection in $n$-exangulated categories. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 525-552. doi: 10.21136/CMJ.2023.0127-22
[1] Auslander, M.: Functors and morphisms determined by objects. Representation Theory of Algebras Lecture Notes in Pure Applied Mathematics 37. Marcel Dekker, New York (1978), 1-244. | MR | JFM
[2] Auslander, M., Reiten, I.: Representation theory of Artin algebras. III: Almost split sequences. Commun. Algebra 3 (1975), 239-294. | DOI | MR | JFM
[3] Auslander, M., Reiten, I.: Representation theory of Artin algebras. IV: Invariants given by almost split sequences. Commun. Algebra 5 (1977), 443-518. | DOI | MR | JFM
[4] Chen, X.-W.: The Auslander bijections and universal extensions. Ark. Mat. 55 (2017), 41-59. | DOI | MR | JFM
[5] Dräxler, P., Reiten, I., Smalø, S. O., Solberg, Ø.: Exact categories and vector space categories. Trans. Am. Math. Soc. 351 (1999), 647-682. | DOI | MR | JFM
[6] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. | DOI | MR | JFM
[7] He, J., He, J., Zhou, P.: Auslander-Reiten-Serre duality for $n$-exangulated categories. Available at , 24 pages. | arXiv
[8] He, J., He, J., Zhou, P.: Higher Auslander-Reiten sequences via morphisms determined by objects. Available at , 28 pages. | arXiv | MR
[9] He, J., Hu, J., Zhang, D., Zhou, P.: On the existence of Auslander-Reiten $n$-exangles in $n$-exangulated categories. Ark. Mat. 60 (2022), 365-385. | DOI | MR | JFM
[10] He, J., Zhou, P.: $n$-exact categories arising from $n$-exangulated categories. Available at , 16 pages. | arXiv
[11] Herschend, M., Liu, Y., Nakaoka, H.: $n$-exangulated categories. I: Definitions and fundamental properties. J. Algebra 570 (2021), 531-586. | DOI | MR | JFM
[12] Herschend, M., Liu, Y., Nakaoka, H.: $n$-exangulated categories. II: Constructions from $n$-cluster tilting subcategories. J. Algebra 594 (2022), 636-684. | DOI | MR | JFM
[13] Hu, J., Zhang, D., Zhou, P.: Two new classes of $n$-exangulated categories. J. Algebra 568 (2021), 1-21. | DOI | MR | JFM
[14] Iyama, O., Nakaoka, H., Palu, Y.: Auslander-Reiten theory in extriangulated categories. Available at , 40 pages. | arXiv
[15] Jasso, G.: $n$-abelian and $n$-exact categories. Math. Z. 283 (2016), 703-759. | DOI | MR | JFM
[16] Jiao, P.: The generalized Auslander-Reiten duality on an exact category. J. Algebra Appl. 17 (2018), Article ID 1850227, 14 pages. | DOI | MR | JFM
[17] Jiao, P.: Auslander's defect formula and a commutative triangle in an exact category. Front. Math. China 15 (2020), 115-125. | DOI | MR | JFM
[18] Liu, Y., Zhou, P.: Frobenius $n$-exangulated categories. J. Algebra 559 (2020), 161-183. | DOI | MR | JFM
[19] Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. | MR | JFM
[20] Ringel, C. M.: The Auslander bijections: How morphisms are determined by modules. Bull. Math. Sci. 3 (2013), 409-484. | DOI | MR | JFM
[21] Zhao, T.: Relative Auslander bijection in extriangulated categories. Available at www.researchgate.net/publication/367217942 (2021). | MR
[22] Zhao, T., Tan, L., Huang, Z.: Almost split triangles and morphisms determined by objects in extriangulated categories. J. Algebra 559 (2020), 346-378. | DOI | MR | JFM
[23] Zhao, T., Tan, L., Huang, Z.: A bijection triangle in extriangulated categories. J. Algebra 574 (2021), 117-153. | DOI | MR | JFM
[24] Zheng, Q., Wei, J.: $(n+2)$-angulated quotient categories. Algebra Colloq. 26 (2019), 689-720. | DOI | MR | JFM
Cité par Sources :