On $\Pi $-property of some maximal subgroups of Sylow subgroups of finite groups
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1349-1358
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $| G / K : N_{G / K} ( HK/K\cap L/K )|$ is a $\pi (HK/K\cap L/K) $-number. We study the influence of some $p$-subgroups of $G$ satisfying the $\Pi $-property on the structure of $G$, and generalize some known results.
Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $| G / K : N_{G / K} ( HK/K\cap L/K )|$ is a $\pi (HK/K\cap L/K) $-number. We study the influence of some $p$-subgroups of $G$ satisfying the $\Pi $-property on the structure of $G$, and generalize some known results.
DOI : 10.21136/CMJ.2023.0089-23
Classification : 20D10, 20D20
Keywords: finite group; $p$-supersoluble group, $p$-nilpotent group, $\Pi $-property
@article{10_21136_CMJ_2023_0089_23,
     author = {Qiu, Zhengtian and Liu, Jianjun and Chen, Guiyun},
     title = {On $\Pi $-property of some maximal subgroups of {Sylow} subgroups of finite groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1349--1358},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0089-23},
     zbl = {07790578},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0089-23/}
}
TY  - JOUR
AU  - Qiu, Zhengtian
AU  - Liu, Jianjun
AU  - Chen, Guiyun
TI  - On $\Pi $-property of some maximal subgroups of Sylow subgroups of finite groups
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1349
EP  - 1358
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0089-23/
DO  - 10.21136/CMJ.2023.0089-23
LA  - en
ID  - 10_21136_CMJ_2023_0089_23
ER  - 
%0 Journal Article
%A Qiu, Zhengtian
%A Liu, Jianjun
%A Chen, Guiyun
%T On $\Pi $-property of some maximal subgroups of Sylow subgroups of finite groups
%J Czechoslovak Mathematical Journal
%D 2023
%P 1349-1358
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0089-23/
%R 10.21136/CMJ.2023.0089-23
%G en
%F 10_21136_CMJ_2023_0089_23
Qiu, Zhengtian; Liu, Jianjun; Chen, Guiyun. On $\Pi $-property of some maximal subgroups of Sylow subgroups of finite groups. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1349-1358. doi: 10.21136/CMJ.2023.0089-23

[1] Ahmad, A. Y. Alsheik, Jaraden, J. J., Skiba, A. N.: On $\mathcal U_c$-normal subgroups of finite groups. Algebra Colloq. 14 (2007), 25-36. | DOI | MR | JFM

[2] Chen, Z.: On a theorem of Srinivasan. J. Southwest Teach. Univ., Ser. B 12 (1987), 1-4 Chinese. | JFM

[3] Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992). | DOI | MR | JFM

[4] Ezquerro, L. M., Li, X., Li, Y.: Finite groups with some CAP-subgroups. Rend. Semin. Mat. Univ. Padova 131 (2014), 77-87. | DOI | MR | JFM

[5] Gorenstein, D.: Finite Groups. Chelsea Publishing, New York (1980). | MR | JFM

[6] Guo, W.: Structure Theory for Canonical Classes of Finite Groups. Springer, Berlin (2015). | DOI | MR | JFM

[7] Guo, W., Shum, K.-P., Skiba, A. N.: $X$-quasinormal subgroups. Sib. Math. J. 48 (2007), 593-605. | DOI | MR | JFM

[8] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften 134. Springer, Berlin (1967), German. | DOI | MR | JFM

[9] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92. AMS, Providence (2008). | DOI | MR | JFM

[10] Isaacs, I. M.: Semipermutable $\pi$-subgroups. Arch. Math. 102 (2014), 1-6. | DOI | MR | JFM

[11] Kegel, O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78 (1962), 205-221 German. | DOI | MR | JFM

[12] Li, B.: On $\Pi$-property and $\Pi$-normality of subgroups of finite groups. J. Algebra 334 (2011), 321-337. | DOI | MR | JFM

[13] Li, S., He, X.: On normally embedded subgroups of prime power order in finite groups. Commun. Algebra 36 (2008), 2333-2340. | DOI | MR | JFM

[14] Li, S., Shen, Z., Liu, J., Liu, X.: The influence of SS-quasinormality of some subgroups on the structure of finite groups. J. Algebra 319 (2008), 4275-4287. | DOI | MR | JFM

[15] Li, Y. M., He, X. L., Wang, Y. M.: On $s$-semipermutable subgroups of finite groups. Acta Math. Sin., Engl. Ser. 26 (2010), 2215-2222. | DOI | MR | JFM

[16] Li, Y., Qiao, S., Su, N., Wang, Y.: On weakly $s$-semipermutable subgroups of finite groups. J. Algebra 371 (2012), 250-261. | DOI | MR | JFM

[17] Liu, J., Li, S., Shen, Z., Liu, X.: Finite groups with some CAP-subgroups. Indian J. Pure Appl. Math. 42 (2011), 145-156. | DOI | MR | JFM

[18] Lu, J., Li, S.: On $S$-semipermutable subgroups of finite groups. J. Math. Res. Expo. 29 (2009), 985-991. | DOI | MR | JFM

[19] Peacock, R. M.: Groups with a cyclic Sylow subgroup. J. Algebra 56 (1979), 506-509. | DOI | MR | JFM

Cité par Sources :