A twisted class number formula and Gross's special units over an imaginary quadratic field
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1333-1347
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $F/k$ be a finite abelian extension of number fields with $k$ imaginary quadratic. Let $O_F$ be the ring of integers of $F$ and $n\geq 2$ a rational integer. We construct a submodule in the higher odd-degree algebraic $K$-groups of $O_F$ using corresponding Gross's special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher ``twisted'' class number of $F$, which is the cardinal of the finite algebraic $K$-group $K_{2n-2}(O_F)$.
Let $F/k$ be a finite abelian extension of number fields with $k$ imaginary quadratic. Let $O_F$ be the ring of integers of $F$ and $n\geq 2$ a rational integer. We construct a submodule in the higher odd-degree algebraic $K$-groups of $O_F$ using corresponding Gross's special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher ``twisted'' class number of $F$, which is the cardinal of the finite algebraic $K$-group $K_{2n-2}(O_F)$.
DOI :
10.21136/CMJ.2023.0067-23
Classification :
11R70, 19F27
Keywords: algebraic $K$-theory; Dedekind zeta function; Artin $L$-function; Beilinson regulator; generalized index; Lichtenbaum conjecture
Keywords: algebraic $K$-theory; Dedekind zeta function; Artin $L$-function; Beilinson regulator; generalized index; Lichtenbaum conjecture
@article{10_21136_CMJ_2023_0067_23,
author = {El Boukhari, Saad},
title = {A twisted class number formula and {Gross's} special units over an imaginary quadratic field},
journal = {Czechoslovak Mathematical Journal},
pages = {1333--1347},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0067-23},
zbl = {07790577},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0067-23/}
}
TY - JOUR AU - El Boukhari, Saad TI - A twisted class number formula and Gross's special units over an imaginary quadratic field JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1333 EP - 1347 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0067-23/ DO - 10.21136/CMJ.2023.0067-23 LA - en ID - 10_21136_CMJ_2023_0067_23 ER -
%0 Journal Article %A El Boukhari, Saad %T A twisted class number formula and Gross's special units over an imaginary quadratic field %J Czechoslovak Mathematical Journal %D 2023 %P 1333-1347 %V 73 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0067-23/ %R 10.21136/CMJ.2023.0067-23 %G en %F 10_21136_CMJ_2023_0067_23
El Boukhari, Saad. A twisted class number formula and Gross's special units over an imaginary quadratic field. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1333-1347. doi: 10.21136/CMJ.2023.0067-23
Cité par Sources :