A twisted class number formula and Gross's special units over an imaginary quadratic field
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1333-1347
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $F/k$ be a finite abelian extension of number fields with $k$ imaginary quadratic. Let $O_F$ be the ring of integers of $F$ and $n\geq 2$ a rational integer. We construct a submodule in the higher odd-degree algebraic $K$-groups of $O_F$ using corresponding Gross's special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher ``twisted'' class number of $F$, which is the cardinal of the finite algebraic $K$-group $K_{2n-2}(O_F)$.
Let $F/k$ be a finite abelian extension of number fields with $k$ imaginary quadratic. Let $O_F$ be the ring of integers of $F$ and $n\geq 2$ a rational integer. We construct a submodule in the higher odd-degree algebraic $K$-groups of $O_F$ using corresponding Gross's special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher ``twisted'' class number of $F$, which is the cardinal of the finite algebraic $K$-group $K_{2n-2}(O_F)$.
DOI : 10.21136/CMJ.2023.0067-23
Classification : 11R70, 19F27
Keywords: algebraic $K$-theory; Dedekind zeta function; Artin $L$-function; Beilinson regulator; generalized index; Lichtenbaum conjecture
@article{10_21136_CMJ_2023_0067_23,
     author = {El Boukhari, Saad},
     title = {A twisted class number formula and {Gross's} special units over an imaginary quadratic field},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1333--1347},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0067-23},
     zbl = {07790577},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0067-23/}
}
TY  - JOUR
AU  - El Boukhari, Saad
TI  - A twisted class number formula and Gross's special units over an imaginary quadratic field
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1333
EP  - 1347
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0067-23/
DO  - 10.21136/CMJ.2023.0067-23
LA  - en
ID  - 10_21136_CMJ_2023_0067_23
ER  - 
%0 Journal Article
%A El Boukhari, Saad
%T A twisted class number formula and Gross's special units over an imaginary quadratic field
%J Czechoslovak Mathematical Journal
%D 2023
%P 1333-1347
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0067-23/
%R 10.21136/CMJ.2023.0067-23
%G en
%F 10_21136_CMJ_2023_0067_23
El Boukhari, Saad. A twisted class number formula and Gross's special units over an imaginary quadratic field. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1333-1347. doi: 10.21136/CMJ.2023.0067-23

[1] Borel, A.: Cohomologie de ${SL}_n$ et valeurs de fonctions zeta aux points entiers. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 (1977), 613-636 French. | MR | JFM

[2] Bourbaki, N.: Elements of Mathematics: Commutative Algebra. Hermann, Paris (1972). | MR | JFM

[3] Gil, J. I. Burgos: The Regulators of Beilinson and Borel. CRM Monograph Series 15. AMS, Providence (2002). | DOI | MR | JFM

[4] Deninger, C.: Higher regulators and Hecke $L$-series of imaginary quadratic fields. II. Ann. Math. (2) 132 (1990), 131-158. | DOI | MR | JFM

[5] Boukhari, S. El: Fitting ideals of isotypic parts of even $K$-groups. Manuscr. Math. 157 (2018), 23-49. | DOI | MR | JFM

[6] Boukhari, S. El: Higher Stickelberger ideals and even $K$-groups. Proc. Am. Math. Soc. 150 (2022), 3231-3239. | DOI | MR | JFM

[7] Boukhari, S. El: On a Gross conjecture over imaginary quadratic fields. Available at , 17 pages. | arXiv | DOI | MR

[8] Flach, M.: The equivariant Tamagawa number conjecture: A survey. Stark's Conjectures: Recent Work and New Directions Contemporary Mathematics 358. AMS, Providence (2004), 79-125. | DOI | MR | JFM

[9] Ghate, E.: Vandiver's conjecture via $K$-theory. Cyclotomic Fields and Related Topics Bhaskaracharya Pratishthana, Pune (2000), 285-298. | MR | JFM

[10] Gross, B. H.: On the values of Artin $L$-functions. Pure Appl. Math. Q. 1 (2005), 1-13. | DOI | MR | JFM

[11] Johnson-Leung, J.: The local equivariant Tamagawa number conjecture for almost abelian extensions. Women in Numbers 2: Research Directions in Number Theory Contemporary Mathematics 606. AMS, Providence (2013), 1-27. | DOI | MR | JFM

[12] Klingen, H.: Über die Werte der Dedekindschen Zetafunktion. Math. Ann. 145 (1962), 265-272 German. | DOI | MR | JFM

[13] Kolster, M., Do, T. Nguyen Quang, Fleckinger, V.: Twisted $S$-units, $p$-adic class number formulas, and the Lichtenbaum conjectures. Duke Math. J. 84 (1996), 679-717. | DOI | MR | JFM

[14] Kurihara, M.: Some remarks on conjectures about cyclotomic fields and $K$-groups of $\Bbb{Z}$. Compos. Math. 81 (1992), 223-236. | DOI | MR | JFM

[15] Mazur, B., Wiles, A.: Class fields of abelian extensions of $\Bbb{Q}$. Invent. Math. 76 (1984), 179-331. | DOI | MR | JFM

[16] Neukirch, J.: The Beilinson conjecture for algebraic number fields. Beilinson's Conjectures on Special Values of $L$-Functions Perspectives in Mathematics 4. Academic Press, Boston (1988), 193-247. | MR | JFM

[17] Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields. Grundlehren der Mathematischen Wissenschaften 323. Springer, Berlin (2000). | DOI | MR | JFM

[18] Nickel, A.: Leading terms of Artin $L$-series at negative integers and annihilation of higher $K$-groups. Math. Proc. Camb. Philos. Soc. 151 (2011), 1-22. | DOI | MR | JFM

[19] Rapoport, M., Schappacher, N., (eds.), P. Schneider: Beilinson's Conjectures on Special Values of $L$-Functions. Perspectives in Mathematics 4. Academic Press, Boston (1988). | DOI | MR | JFM

[20] Siegel, C. L.: Über die Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 1970 (1970), 15-56 German. | MR | JFM

[21] Sinnott, W.: On the Stickelberger ideal and the circular units of an abelian field. Invent. Math. 62 (1980), 181-234. | DOI | MR | JFM

[22] Snaith, V. P.: Stark's conjecture and new Stickelberger phenomena. Can. J. Math. 58 (2006), 419-448. | DOI | MR | JFM

[23] Soulé, C.: $K$-théorie des anneaux d'entiers de corps de nombres et cohomologie étale. Invent. Math. 55 (1979), 251-295 French. | DOI | MR | JFM

[24] Soulé, C.: On higher $p$-adic regulators. Algebraic $K$-Theory Lecture Notes in Mathematics 854. Springer, Berlin (1981), 372-401. | DOI | MR | JFM

[25] Soulé, C.: Perfect forms and Vandiver conjecture. J. Reine Angew. Math. 517 (1999), 209-221. | DOI | MR | JFM

[26] Sun, C.: The Lichtenbaum conjecture for abelian extension of imaginary quadratic fields. Available at , 17 pages. | arXiv | DOI

[27] Tate, J.: Les conjectures de Stark sur les fonctions $L$ d'Artin en $s=0$. Progress in Mathematics 47. Birkhäuser, Boston (1984), French. | MR | JFM

[28] Viguié, S.: Index-modules and applications. Manuscr. Math. 136 (2011), 445-460. | DOI | MR | JFM

[29] Voevodsky, V.: On motivic cohomology with $\Bbb{Z}/l$-coefficients. Ann. Math. (2) 174 (2011), 401-438. | DOI | MR | JFM

[30] Wiles, A.: The Iwasawa conjecture for totally real fields. Ann. Math. (2) 131 (1990), 493-540. | DOI | MR | JFM

Cité par Sources :