The clean elements of the ring $\mathcal R(L)$
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 211-230
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize clean elements of $\mathcal R(L)$ and show that $\alpha \in \mathcal {R}(L)$ is clean if and only if there exists a clopen sublocale $U$ in $L$ such that $\frak {c}_L({\rm coz} (\alpha - {\bf 1})) \subseteq U \subseteq \frak {o}_L( {\rm coz} (\alpha ))$. Also, we prove that $\mathcal R(L)$ is clean if and only if $\mathcal R(L)$ has a clean prime ideal. Then, according to the results about $\mathcal R(L),$ we immediately get results about $\mathcal C_{c}(L).$
We characterize clean elements of $\mathcal R(L)$ and show that $\alpha \in \mathcal {R}(L)$ is clean if and only if there exists a clopen sublocale $U$ in $L$ such that $\frak {c}_L({\rm coz} (\alpha - {\bf 1})) \subseteq U \subseteq \frak {o}_L( {\rm coz} (\alpha ))$. Also, we prove that $\mathcal R(L)$ is clean if and only if $\mathcal R(L)$ has a clean prime ideal. Then, according to the results about $\mathcal R(L),$ we immediately get results about $\mathcal C_{c}(L).$
DOI : 10.21136/CMJ.2023.0062-23
Classification : 06D22, 54C05, 54C30
Keywords: frame; ring of real-valued continuous function; strongly zero-dimensional; clean element; sublocale
@article{10_21136_CMJ_2023_0062_23,
     author = {Estaji, Ali Akbar and Taha, Maryam},
     title = {The clean elements of the ring $\mathcal R(L)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {211--230},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2023.0062-23},
     mrnumber = {4717830},
     zbl = {07893375},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0062-23/}
}
TY  - JOUR
AU  - Estaji, Ali Akbar
AU  - Taha, Maryam
TI  - The clean elements of the ring $\mathcal R(L)$
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 211
EP  - 230
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0062-23/
DO  - 10.21136/CMJ.2023.0062-23
LA  - en
ID  - 10_21136_CMJ_2023_0062_23
ER  - 
%0 Journal Article
%A Estaji, Ali Akbar
%A Taha, Maryam
%T The clean elements of the ring $\mathcal R(L)$
%J Czechoslovak Mathematical Journal
%D 2024
%P 211-230
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0062-23/
%R 10.21136/CMJ.2023.0062-23
%G en
%F 10_21136_CMJ_2023_0062_23
Estaji, Ali Akbar; Taha, Maryam. The clean elements of the ring $\mathcal R(L)$. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 211-230. doi: 10.21136/CMJ.2023.0062-23

[1] Aliabad, A. R., Mahmoudi, M.: Pre-image of functions in $C(L)$. Categ. Gen. Algebr. Struct. Appl. 15 (2021), 35-58. | DOI | MR | JFM

[2] Azarpanah, F.: When is $C(X)$ a clean ring?. Acta. Math. Hung. 94 (2002), 53-58. | DOI | MR | JFM

[3] Ball, R. N., Hager, A. W.: On the localic Yosida representation of an archimedean lattice ordered group with weak order unit. J. Pure Appl. Algebra 70 (1991), 17-43. | DOI | MR | JFM

[4] Ball, R. N., Walters-Wayland, J.: $C$- and $C^*$-quotients in pointfree topology. Diss. Math. 412 (2002), 1-62. | DOI | MR | JFM

[5] Banaschewski, B.: Pointfree topology and the spectra of $f$-rings. Ordered Algebraic Structures Kluwer Academic, Dordrecht (1997), 123-148. | DOI | MR | JFM

[6] Banaschewski, B.: The real numbers in pointfree topology. Textos de Mathemática. Series B 12. Universidade de Coimbra, Coimbra (1997). | MR | JFM

[7] Banaschewski, B.: Gelfand and exchange rings: Their spectra in pointfree topology. Arab. J. Sci. Eng., Sect. C, Theme Issues 25 (2000), 3-22. | MR | JFM

[8] Banaschewski, B.: On the pointfree counterpart of the local definition of classical continuous maps. Categ. Gen. Algebr. Struct. Appl. 8 (2018), 1-8. | MR | JFM

[9] Banaschewski, B., Gilmour, C.: Pseudocompactness and the cozero part of a frame. Commentat. Math. Univ. Carol. 37 (1996), 577-587. | MR | JFM

[10] Dube, T.: Concerning $P$-frames, essential $P$-frames, and strongly zero-dimensional frames. Algebra Univers. 61 (2009), 115-138. | DOI | MR | JFM

[11] Elyasi, M., Estaji, A. A., Sarpoushi, M. Robat: Locally functionally countable subalgebra of $\mathcal{R}(L)$. Arch. Math., Brno 56 (2020), 127-140. | DOI | MR | JFM

[12] Estaji, A. A., Feizabadi, A. Karimi, Sarpoushi, M. Robat: $\mathcal z_c$-ideals and prime ideals in ring $\mathcal{R}_c(L)$. Filomat 32 (2018), 6741-6752. | DOI | MR | JFM

[13] Estaji, A. A., Sarpoushi, M. Robat, Elyasi, M.: Further thoughts on the ring $\mathcal{R}_c(L)$ in frames. Algebra Univers. 80 (2019), Article ID 43, 14 pages. | DOI | MR | JFM

[14] Ferreira, M. J., Picado, J., Pinto, S. M.: Remainders in pointfree topology. Topology Appl. 245 (2018), 21-45. | DOI | MR | JFM

[15] Johnstone, P. T.: Stone Spaces. Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). | MR | JFM

[16] Johnstone, P. T.: Cartesian monads on toposes. J. Pure Appl. Algebra 116 (1997), 199-220. | DOI | MR | JFM

[17] Johnstone, P. T.: Topos Theory. London Mathematical Society Monographs 10. Academic Press, New York (1997). | MR | JFM

[18] Karamzadeh, O. A. S., Namdari, M., Soltanpour, S.: On the locally functionally countable subalgebra of $C(X)$. Appl. Gen. Topol. 16 (2015), 183-207. | DOI | MR | JFM

[19] Feizabadi, A. Karimi, Estaji, A. A., Sarpoushi, M. Robat: Pointfree topology version of image of real-valued continuous functions. Categ. Gen. Algebr. Struct. Appl. 9 (2018), 59-75. | DOI | MR | JFM

[20] Kou, H., Luo, M. K.: Strongly zero-dimensional locales. Acta Math. Sin., Engl. Ser. 18 (2002), 47-54. | DOI | MR | JFM

[21] Mehri, R., Mohamadian, R.: On the locally countable subalgebra of $C(X)$ whose local domain is cocountable. Hacet. J. Math. Stat. 46 (2017), 1053-1068. | DOI | MR | JFM

[22] Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Frontiers in Mathematics. Springer, Berlin (2012). | DOI | MR | JFM

[23] Sarpoushi, M. Robat: Pointfree Topology Version of Continuous Functions with Countable Image: Ph.D. Thesis. Hakim Sabzevari University, Sabzevar (2017).

[24] Taha, M., Estaji, A. A., Sarpoushi, M. Robat: On the regularity of $\mathcal{C}_c(\rm L)$. $53^{nd}$ Annual Iranian Mathematics Confrence, University of Science & Technology of Mazandaran, September 5-8, 2022 1323-1326.

Cité par Sources :