The clean elements of the ring $\mathcal R(L)$
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 211-230.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We characterize clean elements of $\mathcal R(L)$ and show that $\alpha \in \mathcal {R}(L)$ is clean if and only if there exists a clopen sublocale $U$ in $L$ such that $\frak {c}_L({\rm coz} (\alpha - {\bf 1})) \subseteq U \subseteq \frak {o}_L( {\rm coz} (\alpha ))$. Also, we prove that $\mathcal R(L)$ is clean if and only if $\mathcal R(L)$ has a clean prime ideal. Then, according to the results about $\mathcal R(L),$ we immediately get results about $\mathcal C_{c}(L).$
DOI : 10.21136/CMJ.2023.0062-23
Classification : 06D22, 54C05, 54C30
Keywords: frame; ring of real-valued continuous function; strongly zero-dimensional; clean element; sublocale
@article{10_21136_CMJ_2023_0062_23,
     author = {Estaji, Ali Akbar and Taha, Maryam},
     title = {The clean elements of the ring $\mathcal R(L)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {211--230},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2024},
     doi = {10.21136/CMJ.2023.0062-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0062-23/}
}
TY  - JOUR
AU  - Estaji, Ali Akbar
AU  - Taha, Maryam
TI  - The clean elements of the ring $\mathcal R(L)$
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 211
EP  - 230
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0062-23/
DO  - 10.21136/CMJ.2023.0062-23
LA  - en
ID  - 10_21136_CMJ_2023_0062_23
ER  - 
%0 Journal Article
%A Estaji, Ali Akbar
%A Taha, Maryam
%T The clean elements of the ring $\mathcal R(L)$
%J Czechoslovak Mathematical Journal
%D 2024
%P 211-230
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0062-23/
%R 10.21136/CMJ.2023.0062-23
%G en
%F 10_21136_CMJ_2023_0062_23
Estaji, Ali Akbar; Taha, Maryam. The clean elements of the ring $\mathcal R(L)$. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 211-230. doi : 10.21136/CMJ.2023.0062-23. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0062-23/

Cité par Sources :