Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1017-1056
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by $p(x,t)$-power law for $p(x,t)\geq (3n+2)/(n+2)$, $n\geq 2,$ by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.
We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by $p(x,t)$-power law for $p(x,t)\geq (3n+2)/(n+2)$, $n\geq 2,$ by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.
DOI : 10.21136/CMJ.2023.0033-22
Classification : 35D30, 35D35, 35K92, 76A05
Keywords: weak solution; time regularity; generalized Newtonian fluid, variable exponent
@article{10_21136_CMJ_2023_0033_22,
     author = {Sin, Cholmin},
     title = {Time regularity of generalized {Navier-Stokes} equation with $p(x,t)$-power law},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1017--1056},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0033-22},
     zbl = {07790560},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/}
}
TY  - JOUR
AU  - Sin, Cholmin
TI  - Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1017
EP  - 1056
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/
DO  - 10.21136/CMJ.2023.0033-22
LA  - en
ID  - 10_21136_CMJ_2023_0033_22
ER  - 
%0 Journal Article
%A Sin, Cholmin
%T Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law
%J Czechoslovak Mathematical Journal
%D 2023
%P 1017-1056
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/
%R 10.21136/CMJ.2023.0033-22
%G en
%F 10_21136_CMJ_2023_0033_22
Sin, Cholmin. Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1017-1056. doi: 10.21136/CMJ.2023.0033-22

[1] Abbatiello, A., Bulíček, M., Kaplický, P.: On the existence of classical solution to the steady flows of generalized Newtonian fluid with concentration dependent power-law index. J. Math. Fluid Mech. 21 (2019), Article ID 15, 22 pages. | DOI | MR | JFM

[2] Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164 (2002), 213-259. | DOI | MR | JFM

[3] Acerbi, E., Mingione, G.: Gradient estimates for the $p(x)$-Laplacian system. J. Reine Angew. Math. 584 (2005), 117-148. | DOI | MR | JFM

[4] Antontsev, S. N., Rodrigues, J. F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52 (2006), 19-36. | DOI | MR | JFM

[5] Veiga, H. Beirão da, Kaplický, P., Růžička, M.: Boundary regularity of shear thickening flows. J. Math. Fluid Mech. 13 (2011), 387-404. | DOI | MR | JFM

[6] Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics 129. Academic Press, Boston (1988). | MR | JFM

[7] Berselli, L. C., Diening, L., Růžička, M.: Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech. 12 (2010), 101-132. | DOI | MR | JFM

[8] Breit, D., Mensah, P. R.: Space-time approximation of parabolic systems with variable growth. IMA J. Numer. Anal. 40 (2020), 2505-2552. | DOI | MR | JFM

[9] Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D.: The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Commun. Pure Appl. Anal. 8 (2009), 1503-1520. | DOI | MR | JFM

[10] Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D.: On uniqueness and time regularity of flows of power-law like non-Newtonian fluids. Math. Methods Appl. Sci. 33 (2010), 1995-2010. | DOI | MR | JFM

[11] Bulíček, M., Kaplický, P., Pražák, D.: Uniqueness and regularity of flows of non-Newtonian fluids with critical power-law growth. Math. Models Methods Appl. Sci. 29 (2019), 1207-1225. | DOI | MR | JFM

[12] Bulíček, M., Pustějovská, P.: On existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index. J. Math. Anal. Appl. 402 (2013), 157-166. | DOI | MR | JFM

[13] Bulíček, M., Pustějovská, P.: Existence analysis for a model describing flows of an incompressible chemically reacting non-Newtonian fluid. SIAM J. Math. Anal. 46 (2014), 3223-3240. | DOI | MR | JFM

[14] Burczak, J., Kaplický, P.: Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences. Commun. Pure Appl. Anal. 15 (2016), 2401-2445. | DOI | MR | JFM

[15] Crispo, F.: A note on the existence and uniqueness of time-periodic electro-rheological flows. Acta Appl. Math. 132 (2014), 237-250. | DOI | MR | JFM

[16] Diening, L.: Theoretical and Numerical Results for Electrorheological Fluids: Ph. D. Thesis. Universität Freiburg, Freiburg im Breisgau (2002). | JFM

[17] Diening, L., Růžička, M.: Strong solutions for generalized Newtonian fluids. J. Math. Fluid Mech. 7 (2005), 413-450. | DOI | MR | JFM

[18] Diening, L., Růžička, M., Wolf, J.: Existence of weak solutions for unsteady motion of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 1-46. | DOI | MR | JFM

[19] Evans, L. C.: Partial Differential Equations. Graduate Studies in Mathematics 19. AMS, Providence (1998). | DOI | MR | JFM

[20] Frehse, J., Schwarzacher, S.: On regularity of the time derivative for degenerate parabolic systems. SIAM J. Math. Anal. 45 (2015), 3917-3943. | DOI | MR | JFM

[21] Frigeri, S., Grasselli, M., Pražák, D.: Nonlocal Cahn-Hilliard-Navier-Stokes systems with shear dependent viscosity. J. Math. Anal. Appl. 459 (2018), 753-777. | DOI | MR | JFM

[22] Grasselli, M., Pražák, D.: Regularity results for a Cahn-Hilliard-Navier-Stokes system with shear dependent viscosity. Z. Anal. Anwend. 33 (2014), 271-288. | DOI | MR | JFM

[23] Kaplický, P.: Time regularity of flows of non-Newtonian fluids. IASME Trans. 2 (2005), 1232-1236. | MR

[24] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969). | MR | JFM

[25] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). | DOI | MR | JFM

[26] Málek, J., Nečas, J., Růžička, M.: On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $p\geq 2$. Adv. Differ. Equ. 6 (2001), 257-302. | DOI | MR | JFM

[27] Naumann, J., Wolf, J., Wolff, M.: On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions. Commentat. Math. Univ. Carol. 39 (1998), 237-255. | MR | JFM

[28] Pastukhova, S. E.: Nonstationary version of Zhikov's compensated compactness lemma and its application to the solvability of the generalized Navier-Stokes equations. Dokl. Math. 81 (2010), 66-71. | DOI | MR | JFM

[29] Růžička, M.: Electrorheological Fluid: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM

[30] Růžička, M.: Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math., Praha 49 (2004), 565-609. | DOI | MR | JFM

[31] Simon, J.: Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval. Ann. Mat. Pura Appl., IV. Ser. 157 (1990), 117-148. | DOI | MR | JFM

[32] Sin, C.: The existence of strong solutions to steady motion of electrorheological fluids in 3D cubic domain. J. Math. Anal. Appl. 445 (2017), 1025-1046. | DOI | MR | JFM

[33] Sin, C.: The existence of weak solutions for steady flows of electrorheological fluids with nonhomogeneous Dirichlet boundary condition. Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162. | DOI | MR | JFM

[34] Sin, C.: Boundary partial $C^{1,\alpha}$-regularity for stationary shear thickening flows in 3D. J. Math. Fluid Mech. 20 (2018), 1617-1639. | DOI | MR | JFM

[35] Sin, C.: Global regularity of weak solutions for steady motions of electrorheological fluids in 3D smooth domain. J. Math. Anal. Appl. 461 (2018), 752-776. | DOI | MR | JFM

[36] Sin, C.: Boundary partial regularity for steady flows of electrorheological fluids in 3D bounded domains. Nonlinear Anal., Theory Methods Appl., Ser. A 179 (2019), 309-343. | DOI | MR | JFM

[37] Sin, C.: Local higher integrability for unsteady motion equations of generalized Newtonian fluids. Nonlinear Anal., Theory Methods Appl., Ser. A 200 (2020), Article ID 112029, 23 pages. | DOI | MR | JFM

[38] Sin, C., Baranovskii, E. S.: Hölder continuity of solutions for unsteady generalized NavierStokes equations with $p(x,t)$-power law in 2D. J. Math. Anal. Appl. 517 (2023), Article ID 126632, 31 pages. | DOI | MR | JFM

[39] Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts. Birkhäuser, Basel (2001). | DOI | MR | JFM

[40] Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and its Applications 2. North-Holland, Amsterdam (1984). | MR | JFM

[41] Zhikov, V. V.: New approach to the solvability of generalized Navier-Stokes equations. Funct. Anal. Appl. 43 (2009), 190-207. | DOI | MR | JFM

Cité par Sources :