Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1017-1056

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by $p(x,t)$-power law for $p(x,t)\geq (3n+2)/(n+2)$, $n\geq 2,$ by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.
DOI : 10.21136/CMJ.2023.0033-22
Classification : 35D30, 35D35, 35K92, 76A05
Keywords: weak solution; time regularity; generalized Newtonian fluid, variable exponent
@article{10_21136_CMJ_2023_0033_22,
     author = {Sin, Cholmin},
     title = {Time regularity of generalized {Navier-Stokes} equation with $p(x,t)$-power law},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1017--1056},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2023},
     doi = {10.21136/CMJ.2023.0033-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/}
}
TY  - JOUR
AU  - Sin, Cholmin
TI  - Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1017
EP  - 1056
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/
DO  - 10.21136/CMJ.2023.0033-22
LA  - en
ID  - 10_21136_CMJ_2023_0033_22
ER  - 
%0 Journal Article
%A Sin, Cholmin
%T Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law
%J Czechoslovak Mathematical Journal
%D 2023
%P 1017-1056
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/
%R 10.21136/CMJ.2023.0033-22
%G en
%F 10_21136_CMJ_2023_0033_22
Sin, Cholmin. Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1017-1056. doi: 10.21136/CMJ.2023.0033-22

Cité par Sources :