Keywords: weak solution; time regularity; generalized Newtonian fluid, variable exponent
@article{10_21136_CMJ_2023_0033_22,
author = {Sin, Cholmin},
title = {Time regularity of generalized {Navier-Stokes} equation with $p(x,t)$-power law},
journal = {Czechoslovak Mathematical Journal},
pages = {1017--1056},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0033-22},
zbl = {07790560},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/}
}
TY - JOUR AU - Sin, Cholmin TI - Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1017 EP - 1056 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/ DO - 10.21136/CMJ.2023.0033-22 LA - en ID - 10_21136_CMJ_2023_0033_22 ER -
%0 Journal Article %A Sin, Cholmin %T Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law %J Czechoslovak Mathematical Journal %D 2023 %P 1017-1056 %V 73 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/ %R 10.21136/CMJ.2023.0033-22 %G en %F 10_21136_CMJ_2023_0033_22
Sin, Cholmin. Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1017-1056. doi: 10.21136/CMJ.2023.0033-22
[1] Abbatiello, A., Bulíček, M., Kaplický, P.: On the existence of classical solution to the steady flows of generalized Newtonian fluid with concentration dependent power-law index. J. Math. Fluid Mech. 21 (2019), Article ID 15, 22 pages. | DOI | MR | JFM
[2] Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164 (2002), 213-259. | DOI | MR | JFM
[3] Acerbi, E., Mingione, G.: Gradient estimates for the $p(x)$-Laplacian system. J. Reine Angew. Math. 584 (2005), 117-148. | DOI | MR | JFM
[4] Antontsev, S. N., Rodrigues, J. F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52 (2006), 19-36. | DOI | MR | JFM
[5] Veiga, H. Beirão da, Kaplický, P., Růžička, M.: Boundary regularity of shear thickening flows. J. Math. Fluid Mech. 13 (2011), 387-404. | DOI | MR | JFM
[6] Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics 129. Academic Press, Boston (1988). | MR | JFM
[7] Berselli, L. C., Diening, L., Růžička, M.: Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech. 12 (2010), 101-132. | DOI | MR | JFM
[8] Breit, D., Mensah, P. R.: Space-time approximation of parabolic systems with variable growth. IMA J. Numer. Anal. 40 (2020), 2505-2552. | DOI | MR | JFM
[9] Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D.: The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Commun. Pure Appl. Anal. 8 (2009), 1503-1520. | DOI | MR | JFM
[10] Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D.: On uniqueness and time regularity of flows of power-law like non-Newtonian fluids. Math. Methods Appl. Sci. 33 (2010), 1995-2010. | DOI | MR | JFM
[11] Bulíček, M., Kaplický, P., Pražák, D.: Uniqueness and regularity of flows of non-Newtonian fluids with critical power-law growth. Math. Models Methods Appl. Sci. 29 (2019), 1207-1225. | DOI | MR | JFM
[12] Bulíček, M., Pustějovská, P.: On existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index. J. Math. Anal. Appl. 402 (2013), 157-166. | DOI | MR | JFM
[13] Bulíček, M., Pustějovská, P.: Existence analysis for a model describing flows of an incompressible chemically reacting non-Newtonian fluid. SIAM J. Math. Anal. 46 (2014), 3223-3240. | DOI | MR | JFM
[14] Burczak, J., Kaplický, P.: Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences. Commun. Pure Appl. Anal. 15 (2016), 2401-2445. | DOI | MR | JFM
[15] Crispo, F.: A note on the existence and uniqueness of time-periodic electro-rheological flows. Acta Appl. Math. 132 (2014), 237-250. | DOI | MR | JFM
[16] Diening, L.: Theoretical and Numerical Results for Electrorheological Fluids: Ph. D. Thesis. Universität Freiburg, Freiburg im Breisgau (2002). | JFM
[17] Diening, L., Růžička, M.: Strong solutions for generalized Newtonian fluids. J. Math. Fluid Mech. 7 (2005), 413-450. | DOI | MR | JFM
[18] Diening, L., Růžička, M., Wolf, J.: Existence of weak solutions for unsteady motion of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 1-46. | DOI | MR | JFM
[19] Evans, L. C.: Partial Differential Equations. Graduate Studies in Mathematics 19. AMS, Providence (1998). | DOI | MR | JFM
[20] Frehse, J., Schwarzacher, S.: On regularity of the time derivative for degenerate parabolic systems. SIAM J. Math. Anal. 45 (2015), 3917-3943. | DOI | MR | JFM
[21] Frigeri, S., Grasselli, M., Pražák, D.: Nonlocal Cahn-Hilliard-Navier-Stokes systems with shear dependent viscosity. J. Math. Anal. Appl. 459 (2018), 753-777. | DOI | MR | JFM
[22] Grasselli, M., Pražák, D.: Regularity results for a Cahn-Hilliard-Navier-Stokes system with shear dependent viscosity. Z. Anal. Anwend. 33 (2014), 271-288. | DOI | MR | JFM
[23] Kaplický, P.: Time regularity of flows of non-Newtonian fluids. IASME Trans. 2 (2005), 1232-1236. | MR
[24] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969). | MR | JFM
[25] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). | DOI | MR | JFM
[26] Málek, J., Nečas, J., Růžička, M.: On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $p\geq 2$. Adv. Differ. Equ. 6 (2001), 257-302. | DOI | MR | JFM
[27] Naumann, J., Wolf, J., Wolff, M.: On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions. Commentat. Math. Univ. Carol. 39 (1998), 237-255. | MR | JFM
[28] Pastukhova, S. E.: Nonstationary version of Zhikov's compensated compactness lemma and its application to the solvability of the generalized Navier-Stokes equations. Dokl. Math. 81 (2010), 66-71. | DOI | MR | JFM
[29] Růžička, M.: Electrorheological Fluid: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM
[30] Růžička, M.: Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math., Praha 49 (2004), 565-609. | DOI | MR | JFM
[31] Simon, J.: Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval. Ann. Mat. Pura Appl., IV. Ser. 157 (1990), 117-148. | DOI | MR | JFM
[32] Sin, C.: The existence of strong solutions to steady motion of electrorheological fluids in 3D cubic domain. J. Math. Anal. Appl. 445 (2017), 1025-1046. | DOI | MR | JFM
[33] Sin, C.: The existence of weak solutions for steady flows of electrorheological fluids with nonhomogeneous Dirichlet boundary condition. Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162. | DOI | MR | JFM
[34] Sin, C.: Boundary partial $C^{1,\alpha}$-regularity for stationary shear thickening flows in 3D. J. Math. Fluid Mech. 20 (2018), 1617-1639. | DOI | MR | JFM
[35] Sin, C.: Global regularity of weak solutions for steady motions of electrorheological fluids in 3D smooth domain. J. Math. Anal. Appl. 461 (2018), 752-776. | DOI | MR | JFM
[36] Sin, C.: Boundary partial regularity for steady flows of electrorheological fluids in 3D bounded domains. Nonlinear Anal., Theory Methods Appl., Ser. A 179 (2019), 309-343. | DOI | MR | JFM
[37] Sin, C.: Local higher integrability for unsteady motion equations of generalized Newtonian fluids. Nonlinear Anal., Theory Methods Appl., Ser. A 200 (2020), Article ID 112029, 23 pages. | DOI | MR | JFM
[38] Sin, C., Baranovskii, E. S.: Hölder continuity of solutions for unsteady generalized NavierStokes equations with $p(x,t)$-power law in 2D. J. Math. Anal. Appl. 517 (2023), Article ID 126632, 31 pages. | DOI | MR | JFM
[39] Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts. Birkhäuser, Basel (2001). | DOI | MR | JFM
[40] Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and its Applications 2. North-Holland, Amsterdam (1984). | MR | JFM
[41] Zhikov, V. V.: New approach to the solvability of generalized Navier-Stokes equations. Funct. Anal. Appl. 43 (2009), 190-207. | DOI | MR | JFM
Cité par Sources :