Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1017-1056.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by $p(x,t)$-power law for $p(x,t)\geq (3n+2)/(n+2)$, $n\geq 2,$ by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.
DOI : 10.21136/CMJ.2023.0033-22
Classification : 35D30, 35D35, 35K92, 76A05
Keywords: weak solution; time regularity; generalized Newtonian fluid, variable exponent
@article{10_21136_CMJ_2023_0033_22,
     author = {Sin, Cholmin},
     title = {Time regularity of generalized {Navier-Stokes} equation with $p(x,t)$-power law},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1017--1056},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2023},
     doi = {10.21136/CMJ.2023.0033-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/}
}
TY  - JOUR
AU  - Sin, Cholmin
TI  - Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1017
EP  - 1056
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/
DO  - 10.21136/CMJ.2023.0033-22
LA  - en
ID  - 10_21136_CMJ_2023_0033_22
ER  - 
%0 Journal Article
%A Sin, Cholmin
%T Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law
%J Czechoslovak Mathematical Journal
%D 2023
%P 1017-1056
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/
%R 10.21136/CMJ.2023.0033-22
%G en
%F 10_21136_CMJ_2023_0033_22
Sin, Cholmin. Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1017-1056. doi : 10.21136/CMJ.2023.0033-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0033-22/

Cité par Sources :