$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 321-333
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $E=\{u\in C^1[0,1] \colon u(0)=u(1)=0\}$. Let $S_k^\nu $ with $\nu =\{+, -\}$ denote the set of functions $u\in E$ which have exactly $k-1$ interior nodal zeros in (0, 1) and $\nu u$ be positive near $0$. We show the existence of $S$-shaped connected component of $S_k^\nu $-solutions of the problem $$ \begin{cases} \biggl (\dfrac {u'}{\sqrt {1-u'^2}}\bigg )^{\prime }+\lambda a(x) f(u)=0, x\in (0,1), \\ u(0)=u(1)=0, \end{cases} $$ where $\lambda >0$ is a parameter, $a\in C([0, 1], (0,\infty ))$. We determine the intervals of parameter $\lambda $ in which the above problem has one, two or three $S_k^\nu $-solutions. The proofs of the main results are based upon the bifurcation technique.
DOI :
10.21136/CMJ.2023.0027-20
Classification :
34C10, 34C23, 35B40, 35J65
Keywords: mean curvature operator; $S_k^\nu $-solution; bifurcation; Sturm-type comparison theorem
Keywords: mean curvature operator; $S_k^\nu $-solution; bifurcation; Sturm-type comparison theorem
@article{10_21136_CMJ_2023_0027_20,
author = {Ma, Ruyun and He, Zhiqian and Su, Xiaoxiao},
title = {$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator},
journal = {Czechoslovak Mathematical Journal},
pages = {321--333},
publisher = {mathdoc},
volume = {73},
number = {2},
year = {2023},
doi = {10.21136/CMJ.2023.0027-20},
mrnumber = {4586897},
zbl = {07729510},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0027-20/}
}
TY - JOUR AU - Ma, Ruyun AU - He, Zhiqian AU - Su, Xiaoxiao TI - $S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator JO - Czechoslovak Mathematical Journal PY - 2023 SP - 321 EP - 333 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0027-20/ DO - 10.21136/CMJ.2023.0027-20 LA - en ID - 10_21136_CMJ_2023_0027_20 ER -
%0 Journal Article %A Ma, Ruyun %A He, Zhiqian %A Su, Xiaoxiao %T $S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator %J Czechoslovak Mathematical Journal %D 2023 %P 321-333 %V 73 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0027-20/ %R 10.21136/CMJ.2023.0027-20 %G en %F 10_21136_CMJ_2023_0027_20
Ma, Ruyun; He, Zhiqian; Su, Xiaoxiao. $S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 321-333. doi: 10.21136/CMJ.2023.0027-20
Cité par Sources :