$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 321-333
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $E=\{u\in C^1[0,1] \colon u(0)=u(1)=0\}$. Let $S_k^\nu $ with $\nu =\{+, -\}$ denote the set of functions $u\in E$ which have exactly $k-1$ interior nodal zeros in (0, 1) and $\nu u$ be positive near $0$. We show the existence of $S$-shaped connected component of $S_k^\nu $-solutions of the problem $$ \begin{cases} \biggl (\dfrac {u'}{\sqrt {1-u'^2}}\bigg )^{\prime }+\lambda a(x) f(u)=0, x\in (0,1), \\ u(0)=u(1)=0, \end{cases} $$ where $\lambda >0$ is a parameter, $a\in C([0, 1], (0,\infty ))$. We determine the intervals of parameter $\lambda $ in which the above problem has one, two or three $S_k^\nu $-solutions. The proofs of the main results are based upon the bifurcation technique.
Let $E=\{u\in C^1[0,1] \colon u(0)=u(1)=0\}$. Let $S_k^\nu $ with $\nu =\{+, -\}$ denote the set of functions $u\in E$ which have exactly $k-1$ interior nodal zeros in (0, 1) and $\nu u$ be positive near $0$. We show the existence of $S$-shaped connected component of $S_k^\nu $-solutions of the problem $$ \begin{cases} \biggl (\dfrac {u'}{\sqrt {1-u'^2}}\bigg )^{\prime }+\lambda a(x) f(u)=0, x\in (0,1), \\ u(0)=u(1)=0, \end{cases} $$ where $\lambda >0$ is a parameter, $a\in C([0, 1], (0,\infty ))$. We determine the intervals of parameter $\lambda $ in which the above problem has one, two or three $S_k^\nu $-solutions. The proofs of the main results are based upon the bifurcation technique.
DOI : 10.21136/CMJ.2023.0027-20
Classification : 34C10, 34C23, 35B40, 35J65
Keywords: mean curvature operator; $S_k^\nu $-solution; bifurcation; Sturm-type comparison theorem
@article{10_21136_CMJ_2023_0027_20,
     author = {Ma, Ruyun and He, Zhiqian and Su, Xiaoxiao},
     title = {$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator},
     journal = {Czechoslovak Mathematical Journal},
     pages = {321--333},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2023.0027-20},
     mrnumber = {4586897},
     zbl = {07729510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0027-20/}
}
TY  - JOUR
AU  - Ma, Ruyun
AU  - He, Zhiqian
AU  - Su, Xiaoxiao
TI  - $S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 321
EP  - 333
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0027-20/
DO  - 10.21136/CMJ.2023.0027-20
LA  - en
ID  - 10_21136_CMJ_2023_0027_20
ER  - 
%0 Journal Article
%A Ma, Ruyun
%A He, Zhiqian
%A Su, Xiaoxiao
%T $S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator
%J Czechoslovak Mathematical Journal
%D 2023
%P 321-333
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0027-20/
%R 10.21136/CMJ.2023.0027-20
%G en
%F 10_21136_CMJ_2023_0027_20
Ma, Ruyun; He, Zhiqian; Su, Xiaoxiao. $S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 321-333. doi: 10.21136/CMJ.2023.0027-20

[1] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. 87 (1982), 131-152. | DOI | MR | JFM

[2] Bereanu, C., Jebelean, P., Torres, P. J.: Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. J. Funct. Anal. 265 (2013), 644-659. | DOI | MR | JFM

[3] Bereanu, C., Jebelean, P., Torres, P. J.: Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space. J. Funct. Anal. 264 (2013), 270-287. | DOI | MR | JFM

[4] Boscaggin, A., Garrione, M.: Pairs of nodal solutions for a Minkowski-curvature boundary value problem in a ball. Commun. Contemp. Math. 21 (2019), Artile ID 1850006, 18 pages. | DOI | MR | JFM

[5] Cheng, S.-Y., Yau, S.-T.: Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. Math. (2) 104 (1976), 407-419. | DOI | MR | JFM

[6] Coelho, I., Corsato, C., Obersnel, F., Omari, P.: Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation. Adv. Nonlinear Stud. 12 (2012), 621-638. | DOI | MR | JFM

[7] Corsato, C., Obersnel, F., Omari, P., Rivetti, S.: Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space. J. Math. Anal. Appl. 405 (2013), 227-239. | DOI | MR | JFM

[8] Dai, G.: Global structure of one-sign solutions for problem with mean curvature operator. Nonlinearity 31 (2018), 5309-5328. | DOI | MR

[9] Dai, G., Wang, J.: Nodal solutions to problem with mean curvature operator in Minkowski space. Differ. Integral Equ. 30 (2017), 463-480. | DOI | MR | JFM

[10] Dancer, E. N.: On the structure of solutions of non-linear eigenvalue problems. Indiana Univ. Math. J. 23 (1974), 1069-1076. | DOI | MR | JFM

[11] Feynman, R. P., Leighton, R. B., Sands, M.: The Feynman Lectures on Physics. II.: Mainly Electromagnetism and Matter. Addison-Wesley, Reading (1964). | MR | JFM

[12] Huang, S.-Y.: Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications. J. Differ. Equations 264 (2018), 5977-6011. | DOI | MR | JFM

[13] Hutten, E. H.: Relativistic (non-linear) oscillator. Nature, London 205 (1965), 892. | DOI | JFM

[14] Jaroš, J., Kusano, T.: A Picone type identity for second-order half-linear differential equations. Acta Math. Univ. Comen., New Ser. 68 (1999), 137-151. | MR | JFM

[15] Li, H. J., Yeh, C. C.: Sturmian comparison theorem for half-linear second-order differential equations. Proc. R. Soc. Edinb., Sect. A 125 (1995), 1193-1204. | DOI | MR | JFM

[16] Liang, Y.-H., Wang, S.-H.: Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions. J. Differ. Equations 260 (2016), 8358-8387. | DOI | MR | JFM

[17] Ma, R., Gao, H., Lu, Y.: Global structure of radial positive solutions for a prescribed mean curvature problem in a ball. J. Funct. Anal. 270 (2016), 2430-2455. | DOI | MR | JFM

[18] Ma, R., Xu, M.: $S$-shaped connected component for a nonlinear Dirichlet problem involving mean curvature operator in one-dimension Minkowski space. Bull. Korean Math. Soc. 55 (2018), 1891-1908. | DOI | MR | JFM

[19] MacColl, L. A.: Theory of the relativistic oscillator. Am. J. Phys. 25 (1957), 535-538. | DOI | MR | JFM

[20] Shibata, T.: $S$-shaped bifurcation curves for nonlinear two-parameter problems. Nonlinear Anal., Theory Methods Appl., Ser. A 95 (2014), 796-808. | DOI | MR | JFM

[21] Sim, I., Tanaka, S.: Three positive solutions for one-dimensional $p$-Laplacian problem with sign-changing weight. Appl. Math. Lett. 49 (2015), 42-50. | DOI | MR | JFM

[22] Walter, W.: Ordinary Differential Equations. Graduate Texts in Mathematics 182. Springer, New York (1998). | DOI | MR | JFM

Cité par Sources :