$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 321-333.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $E=\{u\in C^1[0,1] \colon u(0)=u(1)=0\}$. Let $S_k^\nu $ with $\nu =\{+, -\}$ denote the set of functions $u\in E$ which have exactly $k-1$ interior nodal zeros in (0, 1) and $\nu u$ be positive near $0$. We show the existence of $S$-shaped connected component of $S_k^\nu $-solutions of the problem $$ \begin{cases} \biggl (\dfrac {u'}{\sqrt {1-u'^2}}\bigg )^{\prime }+\lambda a(x) f(u)=0, x\in (0,1), \\ u(0)=u(1)=0, \end{cases} $$ where $\lambda >0$ is a parameter, $a\in C([0, 1], (0,\infty ))$. We determine the intervals of parameter $\lambda $ in which the above problem has one, two or three $S_k^\nu $-solutions. The proofs of the main results are based upon the bifurcation technique.
DOI : 10.21136/CMJ.2023.0027-20
Classification : 34C10, 34C23, 35B40, 35J65
Keywords: mean curvature operator; $S_k^\nu $-solution; bifurcation; Sturm-type comparison theorem
@article{10_21136_CMJ_2023_0027_20,
     author = {Ma, Ruyun and He, Zhiqian and Su, Xiaoxiao},
     title = {$S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator},
     journal = {Czechoslovak Mathematical Journal},
     pages = {321--333},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2023},
     doi = {10.21136/CMJ.2023.0027-20},
     mrnumber = {4586897},
     zbl = {07729510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0027-20/}
}
TY  - JOUR
AU  - Ma, Ruyun
AU  - He, Zhiqian
AU  - Su, Xiaoxiao
TI  - $S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 321
EP  - 333
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0027-20/
DO  - 10.21136/CMJ.2023.0027-20
LA  - en
ID  - 10_21136_CMJ_2023_0027_20
ER  - 
%0 Journal Article
%A Ma, Ruyun
%A He, Zhiqian
%A Su, Xiaoxiao
%T $S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator
%J Czechoslovak Mathematical Journal
%D 2023
%P 321-333
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0027-20/
%R 10.21136/CMJ.2023.0027-20
%G en
%F 10_21136_CMJ_2023_0027_20
Ma, Ruyun; He, Zhiqian; Su, Xiaoxiao. $S$-shaped component of nodal solutions for problem involving one-dimension mean curvature operator. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 321-333. doi : 10.21136/CMJ.2023.0027-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0027-20/

Cité par Sources :