A class of quantum doubles of pointed Hopf algebras of rank one
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1319-1331
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct a class of quantum doubles $D(H_{D_n})$ of pointed Hopf algebras of rank one $H_{\mathcal {D}}$. We describe the algebra structures of $D(H_{D_n})$ by generators with relations. Moreover, we give the comultiplication $\Delta _{D}$, counit $\varepsilon _D$ and the antipode $S_{D}$, respectively.
We construct a class of quantum doubles $D(H_{D_n})$ of pointed Hopf algebras of rank one $H_{\mathcal {D}}$. We describe the algebra structures of $D(H_{D_n})$ by generators with relations. Moreover, we give the comultiplication $\Delta _{D}$, counit $\varepsilon _D$ and the antipode $S_{D}$, respectively.
DOI : 10.21136/CMJ.2023.0015-23
Classification : 16G30, 16T05
Keywords: pointed Hopf algebra; quantum double; rank one
@article{10_21136_CMJ_2023_0015_23,
     author = {Sun, Hua and Li, Yueming},
     title = {A class of quantum doubles of pointed {Hopf} algebras of rank one},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1319--1331},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0015-23},
     zbl = {07790576},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0015-23/}
}
TY  - JOUR
AU  - Sun, Hua
AU  - Li, Yueming
TI  - A class of quantum doubles of pointed Hopf algebras of rank one
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1319
EP  - 1331
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0015-23/
DO  - 10.21136/CMJ.2023.0015-23
LA  - en
ID  - 10_21136_CMJ_2023_0015_23
ER  - 
%0 Journal Article
%A Sun, Hua
%A Li, Yueming
%T A class of quantum doubles of pointed Hopf algebras of rank one
%J Czechoslovak Mathematical Journal
%D 2023
%P 1319-1331
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0015-23/
%R 10.21136/CMJ.2023.0015-23
%G en
%F 10_21136_CMJ_2023_0015_23
Sun, Hua; Li, Yueming. A class of quantum doubles of pointed Hopf algebras of rank one. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1319-1331. doi: 10.21136/CMJ.2023.0015-23

[1] Chen, H.: A class of noncommutative and noncocommutative Hopf algebras: The quantum version. Commun. Algebra 27 (1999), 5011-5032. | DOI | MR | JFM

[2] Chen, H.: Skew pairing, cocycle deformations and double crossproducts. Acta Math. Sin., Engl. Ser. 15 (1999), 225-234. | DOI | MR | JFM

[3] Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi Hopf algebras, group cohomology and orbifold models. Nucl. Phys., B, Proc. Suppl. 18 (1990), 60-72. | DOI | MR | JFM

[4] Doi, Y.: Braided bialgebras and quadratic bialgebras. Commun. Algebra 21 (1993), 1731-1749. | DOI | MR | JFM

[5] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). | DOI | MR | JFM

[6] Kondo, H., Saito, Y.: Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to ${sl}_2$. J. Algebra 330 (2011), 103-129. | DOI | MR | JFM

[7] Krop, L., Radford, D. E.: Finite-dimensional Hopf algebras of rank one in characteristic zero. J. Algebra 302 (2006), 214-230. | DOI | MR | JFM

[8] Lusztig, G.: Finite dimensional Hopf algebras arising from quantized universal enveloping algebras. J. Am. Math. Soc. 3 (1990), 257-296. | DOI | MR | JFM

[9] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics. 82. AMS, Providence (1993). | DOI | MR | JFM

[10] Panov, A. N.: Ore extensions of Hopf algebras. Math. Notes 74 (2003), 401-410. | DOI | MR | JFM

[11] Scherotzke, S.: Classification of pointed rank one Hopf algebras. J. Algebra 319 (2008), 2889-2912. | DOI | MR | JFM

[12] Suter, R.: Modules over $U_q({sl_2})$. Commun. Math. Phys. 163 (1994), 359-393. | DOI | MR | JFM

[13] Xiao, J.: Finite dimensional representations of $U_t(sl_(2))$ at roots of unity. Can. J. Math. 49 (1997), 772-787. | DOI | MR | JFM

Cité par Sources :