Keywords: pointed Hopf algebra; quantum double; rank one
@article{10_21136_CMJ_2023_0015_23,
author = {Sun, Hua and Li, Yueming},
title = {A class of quantum doubles of pointed {Hopf} algebras of rank one},
journal = {Czechoslovak Mathematical Journal},
pages = {1319--1331},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0015-23},
zbl = {07790576},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0015-23/}
}
TY - JOUR AU - Sun, Hua AU - Li, Yueming TI - A class of quantum doubles of pointed Hopf algebras of rank one JO - Czechoslovak Mathematical Journal PY - 2023 SP - 1319 EP - 1331 VL - 73 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0015-23/ DO - 10.21136/CMJ.2023.0015-23 LA - en ID - 10_21136_CMJ_2023_0015_23 ER -
%0 Journal Article %A Sun, Hua %A Li, Yueming %T A class of quantum doubles of pointed Hopf algebras of rank one %J Czechoslovak Mathematical Journal %D 2023 %P 1319-1331 %V 73 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0015-23/ %R 10.21136/CMJ.2023.0015-23 %G en %F 10_21136_CMJ_2023_0015_23
Sun, Hua; Li, Yueming. A class of quantum doubles of pointed Hopf algebras of rank one. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1319-1331. doi: 10.21136/CMJ.2023.0015-23
[1] Chen, H.: A class of noncommutative and noncocommutative Hopf algebras: The quantum version. Commun. Algebra 27 (1999), 5011-5032. | DOI | MR | JFM
[2] Chen, H.: Skew pairing, cocycle deformations and double crossproducts. Acta Math. Sin., Engl. Ser. 15 (1999), 225-234. | DOI | MR | JFM
[3] Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi Hopf algebras, group cohomology and orbifold models. Nucl. Phys., B, Proc. Suppl. 18 (1990), 60-72. | DOI | MR | JFM
[4] Doi, Y.: Braided bialgebras and quadratic bialgebras. Commun. Algebra 21 (1993), 1731-1749. | DOI | MR | JFM
[5] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). | DOI | MR | JFM
[6] Kondo, H., Saito, Y.: Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to ${sl}_2$. J. Algebra 330 (2011), 103-129. | DOI | MR | JFM
[7] Krop, L., Radford, D. E.: Finite-dimensional Hopf algebras of rank one in characteristic zero. J. Algebra 302 (2006), 214-230. | DOI | MR | JFM
[8] Lusztig, G.: Finite dimensional Hopf algebras arising from quantized universal enveloping algebras. J. Am. Math. Soc. 3 (1990), 257-296. | DOI | MR | JFM
[9] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics. 82. AMS, Providence (1993). | DOI | MR | JFM
[10] Panov, A. N.: Ore extensions of Hopf algebras. Math. Notes 74 (2003), 401-410. | DOI | MR | JFM
[11] Scherotzke, S.: Classification of pointed rank one Hopf algebras. J. Algebra 319 (2008), 2889-2912. | DOI | MR | JFM
[12] Suter, R.: Modules over $U_q({sl_2})$. Commun. Math. Phys. 163 (1994), 359-393. | DOI | MR | JFM
[13] Xiao, J.: Finite dimensional representations of $U_t(sl_(2))$ at roots of unity. Can. J. Math. 49 (1997), 772-787. | DOI | MR | JFM
Cité par Sources :