On the signless Laplacian and normalized signless Laplacian spreads of graphs
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 499-511.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G=(V,E)$, $V=\{v_1,v_2,\ldots ,v_n\}$, be a simple connected graph with $n$ vertices, $m$ edges and a sequence of vertex degrees $d_1\geq d_2\geq \cdots \geq d_n$. Denote by $A$ and $D$ the adjacency matrix and diagonal vertex degree matrix of $G$, respectively. The signless Laplacian of $G$ is defined as $L^+=D+A$ and the normalized signless Laplacian matrix as $\mathcal {L}^+=D^{-1/2}L^+ D^{-1/2}$. The normalized signless Laplacian spreads of a connected nonbipartite graph $G$ are defined as $r(G)= \gamma _{2}^{+}/ \gamma _{n}^{+}$ and $l(G)=\gamma _{2}^{+}-\gamma _{n}^{+}$, where $\gamma _1^+ \ge \gamma _2^+\ge \cdots \ge \gamma _n^+ \ge 0$ are eigenvalues of $\mathcal {L}^+$. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.
DOI : 10.21136/CMJ.2023.0005-22
Classification : 05C50, 15A18
Keywords: Laplacian graph spectra; bipartite graph; spread of graph
@article{10_21136_CMJ_2023_0005_22,
     author = {Milovanovi\'c, Emina and Bozkurt Altinda\u{g}, Serife B. and Mateji\'c, Marjan and Milovanovi\'c, Igor},
     title = {On the signless {Laplacian} and normalized signless {Laplacian} spreads of graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {499--511},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2023},
     doi = {10.21136/CMJ.2023.0005-22},
     mrnumber = {4586907},
     zbl = {07729520},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0005-22/}
}
TY  - JOUR
AU  - Milovanović, Emina
AU  - Bozkurt Altindağ, Serife B.
AU  - Matejić, Marjan
AU  - Milovanović, Igor
TI  - On the signless Laplacian and normalized signless Laplacian spreads of graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 499
EP  - 511
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0005-22/
DO  - 10.21136/CMJ.2023.0005-22
LA  - en
ID  - 10_21136_CMJ_2023_0005_22
ER  - 
%0 Journal Article
%A Milovanović, Emina
%A Bozkurt Altindağ, Serife B.
%A Matejić, Marjan
%A Milovanović, Igor
%T On the signless Laplacian and normalized signless Laplacian spreads of graphs
%J Czechoslovak Mathematical Journal
%D 2023
%P 499-511
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0005-22/
%R 10.21136/CMJ.2023.0005-22
%G en
%F 10_21136_CMJ_2023_0005_22
Milovanović, Emina; Bozkurt Altindağ, Serife B.; Matejić, Marjan; Milovanović, Igor. On the signless Laplacian and normalized signless Laplacian spreads of graphs. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 499-511. doi : 10.21136/CMJ.2023.0005-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0005-22/

Cité par Sources :