On the signless Laplacian and normalized signless Laplacian spreads of graphs
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 499-511
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G=(V,E)$, $V=\{v_1,v_2,\ldots ,v_n\}$, be a simple connected graph with $n$ vertices, $m$ edges and a sequence of vertex degrees $d_1\geq d_2\geq \cdots \geq d_n$. Denote by $A$ and $D$ the adjacency matrix and diagonal vertex degree matrix of $G$, respectively. The signless Laplacian of $G$ is defined as $L^+=D+A$ and the normalized signless Laplacian matrix as $\mathcal {L}^+=D^{-1/2}L^+ D^{-1/2}$. The normalized signless Laplacian spreads of a connected nonbipartite graph $G$ are defined as $r(G)= \gamma _{2}^{+}/ \gamma _{n}^{+}$ and $l(G)=\gamma _{2}^{+}-\gamma _{n}^{+}$, where $\gamma _1^+ \ge \gamma _2^+\ge \cdots \ge \gamma _n^+ \ge 0$ are eigenvalues of $\mathcal {L}^+$. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.
Let $G=(V,E)$, $V=\{v_1,v_2,\ldots ,v_n\}$, be a simple connected graph with $n$ vertices, $m$ edges and a sequence of vertex degrees $d_1\geq d_2\geq \cdots \geq d_n$. Denote by $A$ and $D$ the adjacency matrix and diagonal vertex degree matrix of $G$, respectively. The signless Laplacian of $G$ is defined as $L^+=D+A$ and the normalized signless Laplacian matrix as $\mathcal {L}^+=D^{-1/2}L^+ D^{-1/2}$. The normalized signless Laplacian spreads of a connected nonbipartite graph $G$ are defined as $r(G)= \gamma _{2}^{+}/ \gamma _{n}^{+}$ and $l(G)=\gamma _{2}^{+}-\gamma _{n}^{+}$, where $\gamma _1^+ \ge \gamma _2^+\ge \cdots \ge \gamma _n^+ \ge 0$ are eigenvalues of $\mathcal {L}^+$. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread.
DOI : 10.21136/CMJ.2023.0005-22
Classification : 05C50, 15A18
Keywords: Laplacian graph spectra; bipartite graph; spread of graph
@article{10_21136_CMJ_2023_0005_22,
     author = {Milovanovi\'c, Emina and Bozkurt Altinda\u{g}, Serife B. and Mateji\'c, Marjan and Milovanovi\'c, Igor},
     title = {On the signless {Laplacian} and normalized signless {Laplacian} spreads of graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {499--511},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2023.0005-22},
     mrnumber = {4586907},
     zbl = {07729520},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0005-22/}
}
TY  - JOUR
AU  - Milovanović, Emina
AU  - Bozkurt Altindağ, Serife B.
AU  - Matejić, Marjan
AU  - Milovanović, Igor
TI  - On the signless Laplacian and normalized signless Laplacian spreads of graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 499
EP  - 511
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0005-22/
DO  - 10.21136/CMJ.2023.0005-22
LA  - en
ID  - 10_21136_CMJ_2023_0005_22
ER  - 
%0 Journal Article
%A Milovanović, Emina
%A Bozkurt Altindağ, Serife B.
%A Matejić, Marjan
%A Milovanović, Igor
%T On the signless Laplacian and normalized signless Laplacian spreads of graphs
%J Czechoslovak Mathematical Journal
%D 2023
%P 499-511
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0005-22/
%R 10.21136/CMJ.2023.0005-22
%G en
%F 10_21136_CMJ_2023_0005_22
Milovanović, Emina; Bozkurt Altindağ, Serife B.; Matejić, Marjan; Milovanović, Igor. On the signless Laplacian and normalized signless Laplacian spreads of graphs. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 499-511. doi: 10.21136/CMJ.2023.0005-22

[1] Andrade, E., Dahl, G., Leal, L., Robbiano, M.: New bounds for the signless Laplacian spread. Linear Algebra Appl. 566 (2019), 98-120. | DOI | MR | JFM

[2] Andrade, E., Freitas, M. A. A. de, Robbiano, M., Rodríguez, J.: New lower bounds for the Randić spread. Linear Algebra Appl. 544 (2018), 254-272. | DOI | MR | JFM

[3] Biernacki, M., Pidek, H., Ryll-Nardzewski, C.: Sur une inéqualité entre des intégrales definies. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 4 (1950), 1-4 French. | MR | JFM

[4] ndağ, Ş. B. Bozkurt Altı: Note on the sum of powers of normalized signless Laplacian eigenvalues of graphs. Math. Interdisc. Research 4 (2019), 171-182. | DOI

[5] ndağ, Ş. B. Bozkurt Altı: Sum of powers of normalized signless Laplacian eigenvalues and Randić (normalized) incidence energy of graphs. Bull. Int. Math. Virtual Inst. 11 (2021), 135-146. | DOI | MR | JFM

[6] Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S.: Randić matrix and Randić energy. MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. | MR | JFM

[7] Butler, S. K.: Eigenvalues and Structures of Graphs: Ph.D. Thesis. University of California, San Diego (2008). | MR

[8] Cavers, M., Fallat, S., Kirkland, S.: On the normalized Laplacian energy and general Randić index $R_{-1}$ of graphs. Linear Algebra Appl. 433 (2010), 172-190. | DOI | MR | JFM

[9] Cheng, B., Liu, B.: The normalized incidence energy of a graph. Linear Algebra Appl. 438 (2013), 4510-4519. | DOI | MR | JFM

[10] Chung, F. R. K.: Spectral Graph Theory. Regional Conference Series in Mathematics 92. AMS, Providence (1997). | DOI | MR | JFM

[11] Cirtoaje, V.: The best lower bound depended on two fixed variables for Jensen's inequality with ordered variables. J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. | DOI | MR | JFM

[12] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications. Pure and Applied Mathematics 87. Academic Press, New York (1980). | MR

[13] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacian of finite graphs. Linear Algebra Appl. 423 (2007), 155-171. | DOI | MR | JFM

[14] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on the signless Laplacian. II. Linear Algebra Appl. 432 (2010), 2257-2277. | DOI | MR | JFM

[15] Das, K. C., Güngör, A. D., Bozkurt, Ş. B.: On the normalized Laplacian eigenvalues of graphs. Ars Comb. 118 (2015), 143-154. | MR | JFM

[16] Gomes, H., Gutman, I., Martins, E. Andrade, Robbiano, M., Martín, B. San: On Randić spread. MATCH Commun. Math. Comput. Chem. 72 (2014), 249-266. | MR | JFM

[17] Gomes, H., Martins, E., Robbiano, M., Martín, B. San: Upper bounds for Randić spread. MATCH Commun. Math. Comput. Chem. 72 (2014), 267-278. | MR | JFM

[18] Gu, R., Huang, F., Li, X.: Randić incidence energy of graphs. Trans. Comb. 3 (2014), 1-9. | DOI | MR | JFM

[19] Gutman, I., Milovanović, E., Milovanović, I.: Bounds for Laplacian-type graph energies. Miskolc Math. Notes 16 (2015), 195-203. | DOI | MR | JFM

[20] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals: Total $\phi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. | DOI

[21] Liu, B., Huang, Y., Feng, J.: A note on the Randić spectral radius. MATCH Commun. Math. Comput. Chem. 68 (2012), 913-916. | MR | JFM

[22] Liu, M., Liu, B.: The signless Laplacian spread. Linear Algebra Appl. 432 (2010), 505-514. | DOI | MR | JFM

[23] Güngör, A. D. Maden, Çevik, A. S., Habibi, N.: New bounds for the spread of the signless Laplacian spectrum. Math. Inequal. Appl. 17 (2014), 283-294. | DOI | MR | JFM

[24] Milovanović, I., Milovanović, E., Glogić, E.: On applications of Andrica-Badea and Nagy inequalities in spectral graph theory. Stud. Univ. Babeş-Bolyai, Math. 60 (2015), 603-609. | MR | JFM

[25] Mitrinović, D. S.: Analytic Inequalities. Die Grundlehren der mathematischen Wissenschaften 165. Springer, Berlin (1970). | DOI | MR | JFM

[26] Randić, M.: Characterization of molecular branching. J. Am. Chem. Soc. 97 (1975), 6609-6615. | DOI

[27] Shi, L.: Bounds on Randić indices. Discrete Math. 309 (2009), 5238-5241. | DOI | MR | JFM

[28] Zumstein, P.: Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph: Diploma Thesis. ETH Zürich, Zürich (2005).

Cité par Sources :