Special modules for $R({\rm PSL}(2,q))$
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1301-1317
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a fusion ring and $R_\mathbb {C}:=R\otimes _\mathbb {Z}\mathbb {C}$ be the corresponding fusion algebra. We first show that the algebra $R_\mathbb {C}$ has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, $R_\mathbb {C}$ admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra $R({\rm PSL}(2,q)):=r({\rm PSL}(2,q))\otimes _\mathbb {Z}\mathbb {C}$ up to isomorphism, where $r({\rm PSL}(2,q))$ is the interpolated fusion ring with even $q\geq 2$.
Let $R$ be a fusion ring and $R_\mathbb {C}:=R\otimes _\mathbb {Z}\mathbb {C}$ be the corresponding fusion algebra. We first show that the algebra $R_\mathbb {C}$ has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, $R_\mathbb {C}$ admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra $R({\rm PSL}(2,q)):=r({\rm PSL}(2,q))\otimes _\mathbb {Z}\mathbb {C}$ up to isomorphism, where $r({\rm PSL}(2,q))$ is the interpolated fusion ring with even $q\geq 2$.
DOI : 10.21136/CMJ.2023.0002-23
Classification : 16G99
Keywords: Frobenius-Perron theorem; special module; fusion ring
@article{10_21136_CMJ_2023_0002_23,
     author = {Cao, Liufeng and Chen, Huixiang},
     title = {Special modules for $R({\rm PSL}(2,q))$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1301--1317},
     year = {2023},
     volume = {73},
     number = {4},
     doi = {10.21136/CMJ.2023.0002-23},
     zbl = {07790575},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0002-23/}
}
TY  - JOUR
AU  - Cao, Liufeng
AU  - Chen, Huixiang
TI  - Special modules for $R({\rm PSL}(2,q))$
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1301
EP  - 1317
VL  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0002-23/
DO  - 10.21136/CMJ.2023.0002-23
LA  - en
ID  - 10_21136_CMJ_2023_0002_23
ER  - 
%0 Journal Article
%A Cao, Liufeng
%A Chen, Huixiang
%T Special modules for $R({\rm PSL}(2,q))$
%J Czechoslovak Mathematical Journal
%D 2023
%P 1301-1317
%V 73
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0002-23/
%R 10.21136/CMJ.2023.0002-23
%G en
%F 10_21136_CMJ_2023_0002_23
Cao, Liufeng; Chen, Huixiang. Special modules for $R({\rm PSL}(2,q))$. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1301-1317. doi: 10.21136/CMJ.2023.0002-23

[1] Cao, L. F., Chen, H. X., Li, L. B.: The cell modules of the Green algebra of Drinfel'd quantum double $D(H_4)$. Acta Math. Sin., Engl. Ser. 38 (2022), 1116-1132. | DOI | MR | JFM

[2] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. Mathematical Surveys and Monographs 205. AMS, Providence (2015). | DOI | MR | JFM

[3] Frobenius, G.: Über Matrizen aus positiven Elementen. Berl. Ber. 1908 (1908), 471-476 German \99999JFM99999 39.0213.03 \goodbreak.

[4] Frobenius, G.: Über Matrizen aus positiven Elementen. II. Berl. Ber. German 1909 (1909), 514-518 \99999JFM99999 40.0202.02.

[5] Gantmacher, F. R.: The Theory of Matrices. Vol. 1. AMS Chelsea Publishing, Providence (1998). | MR | JFM

[6] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), 165-184. | DOI | MR | JFM

[7] Kildetoft, K., Mazorchuk, V.: Special modules over positively based algebras. Doc. Math. 21 (2016), 1171-1192. | DOI | MR | JFM

[8] Kudryavtseva, G., Mazorchuk, V.: On multisemigroups. Port. Math. (N.S.) 72 (2015), 47-80. | DOI | MR | JFM

[9] Lin, S., Yang, S.: Representations of a class of positively based algebras. Czech. Math. J. 73 (2023), 811-838. | DOI | MR | JFM

[10] Liu, Z., Palcoux, S., Ren, Y.: Interpolated family of non group-like simple integral fusion rings of Lie type. Available at , 29 pages. | arXiv | MR

[11] Lorenz, M.: Some applications of Frobenius algebras to Hopf algebras. Groups, Algebras and Applications Contemporary Mathematics 537. AMS, Providence (2011), 269-289. | DOI | MR | JFM

[12] Lusztig, G.: Leading coefficients of character values of Hecke algebras. Representations of Finite Groups Proceedings of Symposia in Pure Mathematics 47. AMS, Providence (1987), 235-262. | MR | JFM

[13] Mazorchuk, V., Miemietz, V.: Cell 2-representations of finitary 2-categories. Compos. Math. 147 (2011), 1519-1545. | DOI | MR | JFM

[14] Perron, O.: Zur Theorie der Matrices. Math. Ann. 64 (1907), 248-263 German \99999JFM99999 38.0202.01. | DOI | MR

Cité par Sources :