Special modules for $R({\rm PSL}(2,q))$
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1301-1317
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be a fusion ring and $R_\mathbb {C}:=R\otimes _\mathbb {Z}\mathbb {C}$ be the corresponding fusion algebra. We first show that the algebra $R_\mathbb {C}$ has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, $R_\mathbb {C}$ admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra $R({\rm PSL}(2,q)):=r({\rm PSL}(2,q))\otimes _\mathbb {Z}\mathbb {C}$ up to isomorphism, where $r({\rm PSL}(2,q))$ is the interpolated fusion ring with even $q\geq 2$.
Let $R$ be a fusion ring and $R_\mathbb {C}:=R\otimes _\mathbb {Z}\mathbb {C}$ be the corresponding fusion algebra. We first show that the algebra $R_\mathbb {C}$ has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, $R_\mathbb {C}$ admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra $R({\rm PSL}(2,q)):=r({\rm PSL}(2,q))\otimes _\mathbb {Z}\mathbb {C}$ up to isomorphism, where $r({\rm PSL}(2,q))$ is the interpolated fusion ring with even $q\geq 2$.
DOI :
10.21136/CMJ.2023.0002-23
Classification :
16G99
Keywords: Frobenius-Perron theorem; special module; fusion ring
Keywords: Frobenius-Perron theorem; special module; fusion ring
@article{10_21136_CMJ_2023_0002_23,
author = {Cao, Liufeng and Chen, Huixiang},
title = {Special modules for $R({\rm PSL}(2,q))$},
journal = {Czechoslovak Mathematical Journal},
pages = {1301--1317},
year = {2023},
volume = {73},
number = {4},
doi = {10.21136/CMJ.2023.0002-23},
zbl = {07790575},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0002-23/}
}
TY - JOUR
AU - Cao, Liufeng
AU - Chen, Huixiang
TI - Special modules for $R({\rm PSL}(2,q))$
JO - Czechoslovak Mathematical Journal
PY - 2023
SP - 1301
EP - 1317
VL - 73
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0002-23/
DO - 10.21136/CMJ.2023.0002-23
LA - en
ID - 10_21136_CMJ_2023_0002_23
ER -
Cao, Liufeng; Chen, Huixiang. Special modules for $R({\rm PSL}(2,q))$. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1301-1317. doi: 10.21136/CMJ.2023.0002-23
Cité par Sources :