Special modules for $R({\rm PSL}(2,q))$
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1301-1317.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a fusion ring and $R_\mathbb {C}:=R\otimes _\mathbb {Z}\mathbb {C}$ be the corresponding fusion algebra. We first show that the algebra $R_\mathbb {C}$ has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, $R_\mathbb {C}$ admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra $R({\rm PSL}(2,q)):=r({\rm PSL}(2,q))\otimes _\mathbb {Z}\mathbb {C}$ up to isomorphism, where $r({\rm PSL}(2,q))$ is the interpolated fusion ring with even $q\geq 2$.
DOI : 10.21136/CMJ.2023.0002-23
Classification : 16G99
Keywords: Frobenius-Perron theorem; special module; fusion ring
@article{10_21136_CMJ_2023_0002_23,
     author = {Cao, Liufeng and Chen, Huixiang},
     title = {Special modules for $R({\rm PSL}(2,q))$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1301--1317},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2023},
     doi = {10.21136/CMJ.2023.0002-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0002-23/}
}
TY  - JOUR
AU  - Cao, Liufeng
AU  - Chen, Huixiang
TI  - Special modules for $R({\rm PSL}(2,q))$
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1301
EP  - 1317
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0002-23/
DO  - 10.21136/CMJ.2023.0002-23
LA  - en
ID  - 10_21136_CMJ_2023_0002_23
ER  - 
%0 Journal Article
%A Cao, Liufeng
%A Chen, Huixiang
%T Special modules for $R({\rm PSL}(2,q))$
%J Czechoslovak Mathematical Journal
%D 2023
%P 1301-1317
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0002-23/
%R 10.21136/CMJ.2023.0002-23
%G en
%F 10_21136_CMJ_2023_0002_23
Cao, Liufeng; Chen, Huixiang. Special modules for $R({\rm PSL}(2,q))$. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 4, pp. 1301-1317. doi : 10.21136/CMJ.2023.0002-23. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2023.0002-23/

Cité par Sources :