Wiener index of graphs with fixed number of pendant or cut-vertices
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 411-431
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The Wiener index of a connected graph is defined as the sum of the distances between all unordered pairs of its vertices. We characterize the graphs which extremize the Wiener index among all graphs on $n$ vertices with $k$ pendant vertices. We also characterize the graph which minimizes the Wiener index over the graphs on $n$ vertices with $s$ cut-vertices.
The Wiener index of a connected graph is defined as the sum of the distances between all unordered pairs of its vertices. We characterize the graphs which extremize the Wiener index among all graphs on $n$ vertices with $k$ pendant vertices. We also characterize the graph which minimizes the Wiener index over the graphs on $n$ vertices with $s$ cut-vertices.
DOI :
10.21136/CMJ.2022.0515-20
Classification :
05C05, 05C12, 05C35
Keywords: cut-vertex; distance; pendant vertex; unicyclic graph; Wiener index
Keywords: cut-vertex; distance; pendant vertex; unicyclic graph; Wiener index
@article{10_21136_CMJ_2022_0515_20,
author = {Pandey, Dinesh and Patra, Kamal Lochan},
title = {Wiener index of graphs with fixed number of pendant or cut-vertices},
journal = {Czechoslovak Mathematical Journal},
pages = {411--431},
year = {2022},
volume = {72},
number = {2},
doi = {10.21136/CMJ.2022.0515-20},
mrnumber = {4412767},
zbl = {07547212},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0515-20/}
}
TY - JOUR AU - Pandey, Dinesh AU - Patra, Kamal Lochan TI - Wiener index of graphs with fixed number of pendant or cut-vertices JO - Czechoslovak Mathematical Journal PY - 2022 SP - 411 EP - 431 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0515-20/ DO - 10.21136/CMJ.2022.0515-20 LA - en ID - 10_21136_CMJ_2022_0515_20 ER -
%0 Journal Article %A Pandey, Dinesh %A Patra, Kamal Lochan %T Wiener index of graphs with fixed number of pendant or cut-vertices %J Czechoslovak Mathematical Journal %D 2022 %P 411-431 %V 72 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0515-20/ %R 10.21136/CMJ.2022.0515-20 %G en %F 10_21136_CMJ_2022_0515_20
Pandey, Dinesh; Patra, Kamal Lochan. Wiener index of graphs with fixed number of pendant or cut-vertices. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 411-431. doi: 10.21136/CMJ.2022.0515-20
Cité par Sources :