Wiener index of graphs with fixed number of pendant or cut-vertices
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 411-431.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The Wiener index of a connected graph is defined as the sum of the distances between all unordered pairs of its vertices. We characterize the graphs which extremize the Wiener index among all graphs on $n$ vertices with $k$ pendant vertices. We also characterize the graph which minimizes the Wiener index over the graphs on $n$ vertices with $s$ cut-vertices.
DOI : 10.21136/CMJ.2022.0515-20
Classification : 05C05, 05C12, 05C35
Keywords: cut-vertex; distance; pendant vertex; unicyclic graph; Wiener index
@article{10_21136_CMJ_2022_0515_20,
     author = {Pandey, Dinesh and Patra, Kamal Lochan},
     title = {Wiener index of graphs with fixed number of pendant or cut-vertices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {411--431},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2022},
     doi = {10.21136/CMJ.2022.0515-20},
     mrnumber = {4412767},
     zbl = {07547212},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0515-20/}
}
TY  - JOUR
AU  - Pandey, Dinesh
AU  - Patra, Kamal Lochan
TI  - Wiener index of graphs with fixed number of pendant or cut-vertices
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 411
EP  - 431
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0515-20/
DO  - 10.21136/CMJ.2022.0515-20
LA  - en
ID  - 10_21136_CMJ_2022_0515_20
ER  - 
%0 Journal Article
%A Pandey, Dinesh
%A Patra, Kamal Lochan
%T Wiener index of graphs with fixed number of pendant or cut-vertices
%J Czechoslovak Mathematical Journal
%D 2022
%P 411-431
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0515-20/
%R 10.21136/CMJ.2022.0515-20
%G en
%F 10_21136_CMJ_2022_0515_20
Pandey, Dinesh; Patra, Kamal Lochan. Wiener index of graphs with fixed number of pendant or cut-vertices. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 411-431. doi : 10.21136/CMJ.2022.0515-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0515-20/

Cité par Sources :