On the multiplicity of Laplacian eigenvalues for unicyclic graphs
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 371-390
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a connected graph of order $n$ and $U$ a unicyclic graph with the same order. We firstly give a sharp bound for $m_{G}(\mu )$, the multiplicity of a Laplacian eigenvalue $\mu $ of $G$. As a straightforward result, $m_{U}(1)\le n-2$. We then provide two graph operations (i.e., grafting and shifting) on graph $G$ for which the value of $m_{G}(1)$ is nondecreasing. As applications, we get the distribution of $m_{U}(1)$ for unicyclic graphs on $n$ vertices. Moreover, for the two largest possible values of $m_{U}(1)\in \{n-5,n-3\}$, the corresponding graphs $U$ are completely determined.
Let $G$ be a connected graph of order $n$ and $U$ a unicyclic graph with the same order. We firstly give a sharp bound for $m_{G}(\mu )$, the multiplicity of a Laplacian eigenvalue $\mu $ of $G$. As a straightforward result, $m_{U}(1)\le n-2$. We then provide two graph operations (i.e., grafting and shifting) on graph $G$ for which the value of $m_{G}(1)$ is nondecreasing. As applications, we get the distribution of $m_{U}(1)$ for unicyclic graphs on $n$ vertices. Moreover, for the two largest possible values of $m_{U}(1)\in \{n-5,n-3\}$, the corresponding graphs $U$ are completely determined.
DOI : 10.21136/CMJ.2022.0499-20
Classification : 05C50
Keywords: unicyclic graph; Laplacian eigenvalue; multiplicity; bound
@article{10_21136_CMJ_2022_0499_20,
     author = {Wen, Fei and Huang, Qiongxiang},
     title = {On the multiplicity of {Laplacian} eigenvalues for unicyclic graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {371--390},
     year = {2022},
     volume = {72},
     number = {2},
     doi = {10.21136/CMJ.2022.0499-20},
     mrnumber = {4412765},
     zbl = {07547210},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0499-20/}
}
TY  - JOUR
AU  - Wen, Fei
AU  - Huang, Qiongxiang
TI  - On the multiplicity of Laplacian eigenvalues for unicyclic graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 371
EP  - 390
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0499-20/
DO  - 10.21136/CMJ.2022.0499-20
LA  - en
ID  - 10_21136_CMJ_2022_0499_20
ER  - 
%0 Journal Article
%A Wen, Fei
%A Huang, Qiongxiang
%T On the multiplicity of Laplacian eigenvalues for unicyclic graphs
%J Czechoslovak Mathematical Journal
%D 2022
%P 371-390
%V 72
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0499-20/
%R 10.21136/CMJ.2022.0499-20
%G en
%F 10_21136_CMJ_2022_0499_20
Wen, Fei; Huang, Qiongxiang. On the multiplicity of Laplacian eigenvalues for unicyclic graphs. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 371-390. doi: 10.21136/CMJ.2022.0499-20

[1] Akbari, S., Kiani, D., Mirzakhah, M.: The multiplicity of Laplacian eigenvalue two in unicyclic graphs. Linear Algebra Appl. 445 (2014), 18-28. | DOI | MR | JFM

[2] Akbari, S., Dam, E. R. van, Fakharan, M. H.: Trees with a large Laplacian eigenvalue multiplicity. Linear Algebra Appl. 586 (2020), 262-273. | DOI | MR | JFM

[3] Andrade, E., Cardoso, D. M., Pastén, G., Rojo, O.: On the Faria's inequality for the Laplacian and signless Laplacian spectra: A unified approach. Linear Algebra Appl. 472 (2015), 81-86. | DOI | MR | JFM

[4] Barik, S., Lal, A. K., Pati, S.: On trees with Laplacian eigenvalue one. Linear Multilinear Algebra 56 (2008), 597-610. | DOI | MR | JFM

[5] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext. Springer, New York (2012). | DOI | MR | JFM

[6] Cvetković, D. M., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). | DOI | MR | JFM

[7] Das, K. C.: Sharp lower bounds on the Laplacian eigenvalues of trees. Linear Algebra Appl. 384 (2004), 155-169. | DOI | MR | JFM

[8] Doob, M.: Graphs with a small number of distinct eigenvalues. Ann. N. Y. Acad. Sci. 175 (1970), 104-110. | DOI | MR | JFM

[9] Faria, I.: Permanental roots and the star degree of a graph. Linear Algebra Appl. 64 (1985), 255-265. | DOI | MR | JFM

[10] Grone, R., Merris, R.: Algebraic connectivity of trees. Czech. Math. J. 37 (1987), 660-670. | DOI | MR | JFM

[11] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. | DOI | MR | JFM

[12] Guo, J.-M., Feng, L., Zhang, J.-M.: On the multiplicity of Laplacian eigenvalues of graphs. Czech. Math. J. 60 (2010), 689-698. | DOI | MR | JFM

[13] Huang, X., Huang, Q.: On regular graphs with four distinct eigenvalues. Linear Algebra Appl. 512 (2017), 219-233. | DOI | MR | JFM

[14] Kirkland, S.: A bound on algebra connectivity of a graph in terms of the number cutpoints. Linear Multilinear Algebra 47 (2000), 93-103. | DOI | MR | JFM

[15] Lu, L., Huang, Q., Huang, X.: On graphs with distance Laplacian spectral radius of multiplicity $n-3$. Linear Algebra Appl. 530 (2017), 485-499. | DOI | MR | JFM

[16] Rowlinson, P.: On graphs with just three distinct eigenvalues. Linear Algebra Appl. 507 (2016), 462-473. | DOI | MR | JFM

[17] Dam, E. R. van: Nonregular graphs with three eigenvalues. J. Comb. Theory, Ser. B 73 (1998), 101-118. | DOI | MR | JFM

[18] Dam, E. R. van, Koolen, J. H., Xia, Z.-J.: Graphs with many valencies and few eigenvalues. Electron. J. Linear Algebra 28 (2015), 12-24. | DOI | MR | JFM

Cité par Sources :