Keywords: unicyclic graph; Laplacian eigenvalue; multiplicity; bound
@article{10_21136_CMJ_2022_0499_20,
author = {Wen, Fei and Huang, Qiongxiang},
title = {On the multiplicity of {Laplacian} eigenvalues for unicyclic graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {371--390},
year = {2022},
volume = {72},
number = {2},
doi = {10.21136/CMJ.2022.0499-20},
mrnumber = {4412765},
zbl = {07547210},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0499-20/}
}
TY - JOUR AU - Wen, Fei AU - Huang, Qiongxiang TI - On the multiplicity of Laplacian eigenvalues for unicyclic graphs JO - Czechoslovak Mathematical Journal PY - 2022 SP - 371 EP - 390 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0499-20/ DO - 10.21136/CMJ.2022.0499-20 LA - en ID - 10_21136_CMJ_2022_0499_20 ER -
%0 Journal Article %A Wen, Fei %A Huang, Qiongxiang %T On the multiplicity of Laplacian eigenvalues for unicyclic graphs %J Czechoslovak Mathematical Journal %D 2022 %P 371-390 %V 72 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0499-20/ %R 10.21136/CMJ.2022.0499-20 %G en %F 10_21136_CMJ_2022_0499_20
Wen, Fei; Huang, Qiongxiang. On the multiplicity of Laplacian eigenvalues for unicyclic graphs. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 371-390. doi: 10.21136/CMJ.2022.0499-20
[1] Akbari, S., Kiani, D., Mirzakhah, M.: The multiplicity of Laplacian eigenvalue two in unicyclic graphs. Linear Algebra Appl. 445 (2014), 18-28. | DOI | MR | JFM
[2] Akbari, S., Dam, E. R. van, Fakharan, M. H.: Trees with a large Laplacian eigenvalue multiplicity. Linear Algebra Appl. 586 (2020), 262-273. | DOI | MR | JFM
[3] Andrade, E., Cardoso, D. M., Pastén, G., Rojo, O.: On the Faria's inequality for the Laplacian and signless Laplacian spectra: A unified approach. Linear Algebra Appl. 472 (2015), 81-86. | DOI | MR | JFM
[4] Barik, S., Lal, A. K., Pati, S.: On trees with Laplacian eigenvalue one. Linear Multilinear Algebra 56 (2008), 597-610. | DOI | MR | JFM
[5] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext. Springer, New York (2012). | DOI | MR | JFM
[6] Cvetković, D. M., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). | DOI | MR | JFM
[7] Das, K. C.: Sharp lower bounds on the Laplacian eigenvalues of trees. Linear Algebra Appl. 384 (2004), 155-169. | DOI | MR | JFM
[8] Doob, M.: Graphs with a small number of distinct eigenvalues. Ann. N. Y. Acad. Sci. 175 (1970), 104-110. | DOI | MR | JFM
[9] Faria, I.: Permanental roots and the star degree of a graph. Linear Algebra Appl. 64 (1985), 255-265. | DOI | MR | JFM
[10] Grone, R., Merris, R.: Algebraic connectivity of trees. Czech. Math. J. 37 (1987), 660-670. | DOI | MR | JFM
[11] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. | DOI | MR | JFM
[12] Guo, J.-M., Feng, L., Zhang, J.-M.: On the multiplicity of Laplacian eigenvalues of graphs. Czech. Math. J. 60 (2010), 689-698. | DOI | MR | JFM
[13] Huang, X., Huang, Q.: On regular graphs with four distinct eigenvalues. Linear Algebra Appl. 512 (2017), 219-233. | DOI | MR | JFM
[14] Kirkland, S.: A bound on algebra connectivity of a graph in terms of the number cutpoints. Linear Multilinear Algebra 47 (2000), 93-103. | DOI | MR | JFM
[15] Lu, L., Huang, Q., Huang, X.: On graphs with distance Laplacian spectral radius of multiplicity $n-3$. Linear Algebra Appl. 530 (2017), 485-499. | DOI | MR | JFM
[16] Rowlinson, P.: On graphs with just three distinct eigenvalues. Linear Algebra Appl. 507 (2016), 462-473. | DOI | MR | JFM
[17] Dam, E. R. van: Nonregular graphs with three eigenvalues. J. Comb. Theory, Ser. B 73 (1998), 101-118. | DOI | MR | JFM
[18] Dam, E. R. van, Koolen, J. H., Xia, Z.-J.: Graphs with many valencies and few eigenvalues. Electron. J. Linear Algebra 28 (2015), 12-24. | DOI | MR | JFM
Cité par Sources :