On the least almost-prime in arithmetic progression
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 177-188
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mathcal {P}_r$ denote an almost-prime with at most $r$ prime factors, counted according to multiplicity. Suppose that $a$ and $q$ are positive integers satisfying $(a,q)=1$. Denote by $\mathcal {P}_2(a,q)$ the least almost-prime $\mathcal {P}_2$ which satisfies $\mathcal {P}_2\equiv a\pmod q$. It is proved that for sufficiently large $q$, there holds $$ \mathcal {P}_2(a,q)\ll q^{1.8345}. $$ This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range $1.845$ in place of $1.8345$.
Let $\mathcal {P}_r$ denote an almost-prime with at most $r$ prime factors, counted according to multiplicity. Suppose that $a$ and $q$ are positive integers satisfying $(a,q)=1$. Denote by $\mathcal {P}_2(a,q)$ the least almost-prime $\mathcal {P}_2$ which satisfies $\mathcal {P}_2\equiv a\pmod q$. It is proved that for sufficiently large $q$, there holds $$ \mathcal {P}_2(a,q)\ll q^{1.8345}. $$ This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range $1.845$ in place of $1.8345$.
DOI :
10.21136/CMJ.2022.0478-21
Classification :
11N13, 11N35, 11N36
Keywords: almost-prime; arithmetic progression; linear sieve; Selberg's $\Lambda ^2$-sieve
Keywords: almost-prime; arithmetic progression; linear sieve; Selberg's $\Lambda ^2$-sieve
@article{10_21136_CMJ_2022_0478_21,
author = {Li, Jinjiang and Zhang, Min and Cai, Yingchun},
title = {On the least almost-prime in arithmetic progression},
journal = {Czechoslovak Mathematical Journal},
pages = {177--188},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0478-21},
mrnumber = {4541095},
zbl = {07655761},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0478-21/}
}
TY - JOUR AU - Li, Jinjiang AU - Zhang, Min AU - Cai, Yingchun TI - On the least almost-prime in arithmetic progression JO - Czechoslovak Mathematical Journal PY - 2023 SP - 177 EP - 188 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0478-21/ DO - 10.21136/CMJ.2022.0478-21 LA - en ID - 10_21136_CMJ_2022_0478_21 ER -
%0 Journal Article %A Li, Jinjiang %A Zhang, Min %A Cai, Yingchun %T On the least almost-prime in arithmetic progression %J Czechoslovak Mathematical Journal %D 2023 %P 177-188 %V 73 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0478-21/ %R 10.21136/CMJ.2022.0478-21 %G en %F 10_21136_CMJ_2022_0478_21
Li, Jinjiang; Zhang, Min; Cai, Yingchun. On the least almost-prime in arithmetic progression. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 177-188. doi: 10.21136/CMJ.2022.0478-21
Cité par Sources :