A diophantine equation involving special prime numbers
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 151-176
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $[{\cdot }]$ be the floor function. In this paper, we prove by asymptotic formula that when $1$, then every sufficiently large positive integer $N$ can be represented in the form $$ N=[p^c_1]+[p^c_2]+[p^c_3]+[p^c_4]+[p^c_5], $$ where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are primes such that $p_1=x^2 + y^2 +1$.
Let $[{\cdot }]$ be the floor function. In this paper, we prove by asymptotic formula that when $1$, then every sufficiently large positive integer $N$ can be represented in the form $$ N=[p^c_1]+[p^c_2]+[p^c_3]+[p^c_4]+[p^c_5], $$ where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are primes such that $p_1=x^2 + y^2 +1$.
DOI :
10.21136/CMJ.2022.0469-21
Classification :
11L07, 11L20, 11P32
Keywords: Diophantine equation; prime; exponential sum; asymptotic formula
Keywords: Diophantine equation; prime; exponential sum; asymptotic formula
@article{10_21136_CMJ_2022_0469_21,
author = {Dimitrov, Stoyan},
title = {A diophantine equation involving special prime numbers},
journal = {Czechoslovak Mathematical Journal},
pages = {151--176},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0469-21},
mrnumber = {4541094},
zbl = {07655760},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0469-21/}
}
TY - JOUR AU - Dimitrov, Stoyan TI - A diophantine equation involving special prime numbers JO - Czechoslovak Mathematical Journal PY - 2023 SP - 151 EP - 176 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0469-21/ DO - 10.21136/CMJ.2022.0469-21 LA - en ID - 10_21136_CMJ_2022_0469_21 ER -
Dimitrov, Stoyan. A diophantine equation involving special prime numbers. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 151-176. doi: 10.21136/CMJ.2022.0469-21
Cité par Sources :