A diophantine equation involving special prime numbers
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 151-176 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $[{\cdot }]$ be the floor function. In this paper, we prove by asymptotic formula that when $1
Let $[{\cdot }]$ be the floor function. In this paper, we prove by asymptotic formula that when $1$, then every sufficiently large positive integer $N$ can be represented in the form $$ N=[p^c_1]+[p^c_2]+[p^c_3]+[p^c_4]+[p^c_5], $$ where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are primes such that $p_1=x^2 + y^2 +1$.
DOI : 10.21136/CMJ.2022.0469-21
Classification : 11L07, 11L20, 11P32
Keywords: Diophantine equation; prime; exponential sum; asymptotic formula
@article{10_21136_CMJ_2022_0469_21,
     author = {Dimitrov, Stoyan},
     title = {A diophantine equation involving  special prime numbers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {151--176},
     year = {2023},
     volume = {73},
     number = {1},
     doi = {10.21136/CMJ.2022.0469-21},
     mrnumber = {4541094},
     zbl = {07655760},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0469-21/}
}
TY  - JOUR
AU  - Dimitrov, Stoyan
TI  - A diophantine equation involving  special prime numbers
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 151
EP  - 176
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0469-21/
DO  - 10.21136/CMJ.2022.0469-21
LA  - en
ID  - 10_21136_CMJ_2022_0469_21
ER  - 
%0 Journal Article
%A Dimitrov, Stoyan
%T A diophantine equation involving  special prime numbers
%J Czechoslovak Mathematical Journal
%D 2023
%P 151-176
%V 73
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0469-21/
%R 10.21136/CMJ.2022.0469-21
%G en
%F 10_21136_CMJ_2022_0469_21
Dimitrov, Stoyan. A diophantine equation involving  special prime numbers. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 151-176. doi: 10.21136/CMJ.2022.0469-21

[1] Arkhipov, G. I., Zhitkov, A. N.: On Waring's problem with non-integral exponent. Izv. Akad. Nauk SSSR, Ser. Mat. 48 (1984), 1138-1150 Russian. | MR | JFM

[2] Baker, R.: Some Diophantine equations and inequalities with primes. Funct. Approximatio, Comment. Math. 64 (2021), 203-250. | DOI | MR | JFM

[3] Buriev, K.: Additive Problems with Prime Numbers: Thesis. Moscow State University, Moscow (1989), Russian. | MR

[4] Deshouillers, J.-M.: Problème de Waring avec exposants non entiers. Bull. Soc. Math. Fr. 101 (1973), 285-295 French. | DOI | MR | JFM

[5] Deshouillers, J.-M.: Un problème binaire en théorie additive. Acta Arith. 25 (1974), 393-403 French. | DOI | MR | JFM

[6] Dimitrov, S. I.: A ternary Diophantine inequality over special primes. JP J. Algebra Number Theory Appl. 39 (2017), 335-368. | DOI | MR | JFM

[7] Dimitrov, S. I.: Diophantine approximation with one prime of the form $p=x^2+y^2+1$. Lith. Math. J. 61 (2021), 445-459. | DOI | MR | JFM

[8] Dimitrov, S. I.: A ternary Diophantine inequality by primes with one of the form $p=x^2+y^2+1$. Ramanujan J. 59 (2022), 571-607. | DOI | MR | JFM

[9] Dimitrov, S. I.: A quinary Diophantine inequality by primes with one of the form $p=x^2+y^2+1$. Available at , 27 pages. | arXiv | MR

[10] Graham, S. W., Kolesnik, G.: Van der Corput's Method for Exponential Sums. London Mathematical Society Lecture Note Series 126. Cambridge University Press, New York (1991). | DOI | MR | JFM

[11] Gritsenko, S. A.: Three additive problems. Russ. Acad. Sci., Izv., Math. 41 (1993), 447-464. | DOI | MR | JFM

[12] Heath-Brown, D. R.: The Piateckii-Sapiro prime number theorem. J. Number Theory 16 (1983), 242-266. | DOI | MR | JFM

[13] Hilbert, D.: Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n^{ter}$ Potenzen (Waringsches Problem). Math. Ann. 67 (1909), 281-300 German \99999JFM99999 40.0236.03. | DOI | MR

[14] Hooley, C.: Applications of Sieve Methods to the Theory of Numbers. Cambridge Tracts in Mathematics 70. Cambridge University Press, Cambridge (1976). | MR | JFM

[15] Hua, L.-K.: Some results in the additive prime-number theory. Q. J. Math., Oxf. Ser. 9 (1938), 68-80. | DOI | MR | JFM

[16] Huxley, M. N.: Exponential sums and the Riemann zeta function. V. Proc. Lond. Math. Soc., III. Ser. 90 (2005), 1-41. | DOI | MR | JFM

[17] Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). | DOI | MR | JFM

[18] Konyagin, S. V.: An additive problem with fractional powers. Math. Notes 73 (2003), 594-597. | DOI | MR | JFM

[19] Li, S.: On a Diophantine equation with prime numbers. Int. J. Number Theory 15 (2019), 1601-1616. | DOI | MR | JFM

[20] Linnik, Y. V.: An asymptotic formula in an additive problem of Hardy and Littlewood. Izv. Akad. Nauk SSSR, Ser. Mat. 24 (1960), 629-706 Russian. | MR | JFM

[21] Sargos, P., Wu, J.: Multiple exponential sums with monomials and their applications in number theory. Acta Math. Hung. 87 (2000), 333-354. | DOI | MR | JFM

[22] Segal, B. I.: On a theorem analogous to Waring's theorem. Dokl. Akad. Nauk. SSSR 1933 (1933), 47-49 Russian. | JFM

[23] Segal, B. I.: Waring's theorem for powers with fractional and irrational exponents. Trudy Mat. Inst. Steklov. 5 (1934), 73-86 Russian. | JFM

[24] Tolev, D. I.: On a Diophantine inequality involving prime numbers. Acta Arith. 61 (1992), 289-306. | DOI | MR | JFM

[25] Zhang, M., Li, J.: On a Diophantine equation with five prime variables. Available at , 17 pages. | arXiv

[26] Zhang, M., Li, J.: On a Diophantine equation with three prime variables. Integers 19 (2019), Article ID A39, 13 pages. | MR | JFM

Cité par Sources :