A diophantine equation involving special prime numbers
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 151-176.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $[{\cdot }]$ be the floor function. In this paper, we prove by asymptotic formula that when $1$, then every sufficiently large positive integer $N$ can be represented in the form $$ N=[p^c_1]+[p^c_2]+[p^c_3]+[p^c_4]+[p^c_5], $$ where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are primes such that $p_1=x^2 + y^2 +1$.
DOI : 10.21136/CMJ.2022.0469-21
Classification : 11L07, 11L20, 11P32
Keywords: Diophantine equation; prime; exponential sum; asymptotic formula
@article{10_21136_CMJ_2022_0469_21,
     author = {Dimitrov, Stoyan},
     title = {A diophantine equation involving  special prime numbers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {151--176},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2023},
     doi = {10.21136/CMJ.2022.0469-21},
     mrnumber = {4541094},
     zbl = {07655760},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0469-21/}
}
TY  - JOUR
AU  - Dimitrov, Stoyan
TI  - A diophantine equation involving  special prime numbers
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 151
EP  - 176
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0469-21/
DO  - 10.21136/CMJ.2022.0469-21
LA  - en
ID  - 10_21136_CMJ_2022_0469_21
ER  - 
%0 Journal Article
%A Dimitrov, Stoyan
%T A diophantine equation involving  special prime numbers
%J Czechoslovak Mathematical Journal
%D 2023
%P 151-176
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0469-21/
%R 10.21136/CMJ.2022.0469-21
%G en
%F 10_21136_CMJ_2022_0469_21
Dimitrov, Stoyan. A diophantine equation involving  special prime numbers. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 151-176. doi : 10.21136/CMJ.2022.0469-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0469-21/

Cité par Sources :