Keywords: weighted Hardy space; weighted BMO space; multilinear Calderón-Zygmund operator; weak factorization
@article{10_21136_CMJ_2022_0458_21,
author = {He, Suixin and Tao, Shuangping},
title = {The factorization of the weighted {Hardy} space in terms of multilinear {Calder\'on-Zygmund} operators},
journal = {Czechoslovak Mathematical Journal},
pages = {135--149},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0458-21},
mrnumber = {4541093},
zbl = {07655759},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0458-21/}
}
TY - JOUR AU - He, Suixin AU - Tao, Shuangping TI - The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators JO - Czechoslovak Mathematical Journal PY - 2023 SP - 135 EP - 149 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0458-21/ DO - 10.21136/CMJ.2022.0458-21 LA - en ID - 10_21136_CMJ_2022_0458_21 ER -
%0 Journal Article %A He, Suixin %A Tao, Shuangping %T The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators %J Czechoslovak Mathematical Journal %D 2023 %P 135-149 %V 73 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0458-21/ %R 10.21136/CMJ.2022.0458-21 %G en %F 10_21136_CMJ_2022_0458_21
He, Suixin; Tao, Shuangping. The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 135-149. doi: 10.21136/CMJ.2022.0458-21
[1] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. (2) 103 (1976), 611-635. | DOI | MR | JFM
[2] Duong, X. T., Li, J., Wick, B. D., Yang, D.: Factorization for Hardy spaces and characterization for BMO spaces via commutators in the Bessel setting. Indiana Univ. Math. J. 66 (2017), 1081-1106. | DOI | MR | JFM
[3] Grafakos, L., Torres, R. H.: Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ. Math. J. 51 (2002), 1261-1276. | DOI | MR | JFM
[4] Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220 (2009), 1222-1264. | DOI | MR | JFM
[5] Li, J., Wick, B. D.: Characterizations of $H^{1}_{\Delta_N}(\mathbb{R}^n)$ and BMO$_{\Delta_N}(\mathbb{R}^n)$ via weak factorizations and commutators. J. Funct. Anal. 272 (2017), 5384-5416. | DOI | MR | JFM
[6] Li, J., Wick, B. D.: Weak factorizations of the Hardy space $H^{1}(\mathbb{R}^n)$ in terms of multilinear Riesz transforms. Can. Math. Bull. 60 (2017), 571-585. | DOI | MR | JFM
[7] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972), 207-226. | DOI | MR | JFM
[8] Wang, D. H., Zhou, J., Teng, Z. D.: Characterizations of weighted BMO space and its application. Acta. Math. Sin., Engl. Ser. 37 (2021), 1278-1292. | DOI | MR | JFM
[9] Wang, D., Zhu, R.: Weak factorizations of the Hardy space in terms of multilinear fractional integral operator. Available at , 12 pages. | arXiv | MR
[10] Wang, D., Zhu, R., Shu, L.: The factorizations of $H^\rho(\mathbb{R}^n)$ via multilinear Calderón-Zygmund operators on weighted Lebesgue spaces. Available at , 22 pages. | arXiv | MR
Cité par Sources :