The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 135-149 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a constructive proof of the factorization theorem for the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. The result is also new even in the linear setting. As an application, we obtain the characterization of weighted BMO space via the weighted boundedness of commutators of the multilinear Calderón-Zygmund operators.
We give a constructive proof of the factorization theorem for the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. The result is also new even in the linear setting. As an application, we obtain the characterization of weighted BMO space via the weighted boundedness of commutators of the multilinear Calderón-Zygmund operators.
DOI : 10.21136/CMJ.2022.0458-21
Classification : 42B20, 42B35
Keywords: weighted Hardy space; weighted BMO space; multilinear Calderón-Zygmund operator; weak factorization
@article{10_21136_CMJ_2022_0458_21,
     author = {He, Suixin and Tao, Shuangping},
     title = {The factorization of the weighted {Hardy} space in terms of multilinear {Calder\'on-Zygmund} operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {135--149},
     year = {2023},
     volume = {73},
     number = {1},
     doi = {10.21136/CMJ.2022.0458-21},
     mrnumber = {4541093},
     zbl = {07655759},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0458-21/}
}
TY  - JOUR
AU  - He, Suixin
AU  - Tao, Shuangping
TI  - The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 135
EP  - 149
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0458-21/
DO  - 10.21136/CMJ.2022.0458-21
LA  - en
ID  - 10_21136_CMJ_2022_0458_21
ER  - 
%0 Journal Article
%A He, Suixin
%A Tao, Shuangping
%T The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators
%J Czechoslovak Mathematical Journal
%D 2023
%P 135-149
%V 73
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0458-21/
%R 10.21136/CMJ.2022.0458-21
%G en
%F 10_21136_CMJ_2022_0458_21
He, Suixin; Tao, Shuangping. The factorization of the weighted Hardy space in terms of multilinear Calderón-Zygmund operators. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 135-149. doi: 10.21136/CMJ.2022.0458-21

[1] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. (2) 103 (1976), 611-635. | DOI | MR | JFM

[2] Duong, X. T., Li, J., Wick, B. D., Yang, D.: Factorization for Hardy spaces and characterization for BMO spaces via commutators in the Bessel setting. Indiana Univ. Math. J. 66 (2017), 1081-1106. | DOI | MR | JFM

[3] Grafakos, L., Torres, R. H.: Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ. Math. J. 51 (2002), 1261-1276. | DOI | MR | JFM

[4] Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220 (2009), 1222-1264. | DOI | MR | JFM

[5] Li, J., Wick, B. D.: Characterizations of $H^{1}_{\Delta_N}(\mathbb{R}^n)$ and BMO$_{\Delta_N}(\mathbb{R}^n)$ via weak factorizations and commutators. J. Funct. Anal. 272 (2017), 5384-5416. | DOI | MR | JFM

[6] Li, J., Wick, B. D.: Weak factorizations of the Hardy space $H^{1}(\mathbb{R}^n)$ in terms of multilinear Riesz transforms. Can. Math. Bull. 60 (2017), 571-585. | DOI | MR | JFM

[7] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972), 207-226. | DOI | MR | JFM

[8] Wang, D. H., Zhou, J., Teng, Z. D.: Characterizations of weighted BMO space and its application. Acta. Math. Sin., Engl. Ser. 37 (2021), 1278-1292. | DOI | MR | JFM

[9] Wang, D., Zhu, R.: Weak factorizations of the Hardy space in terms of multilinear fractional integral operator. Available at , 12 pages. | arXiv | MR

[10] Wang, D., Zhu, R., Shu, L.: The factorizations of $H^\rho(\mathbb{R}^n)$ via multilinear Calderón-Zygmund operators on weighted Lebesgue spaces. Available at , 22 pages. | arXiv | MR

Cité par Sources :