Keywords: Herglotz-Nevanlinna function; Cauchy-type function; symmetric extension; Stieltjes inversion formula
@article{10_21136_CMJ_2022_0455_21,
author = {Nedic, Mitja},
title = {An analytic characterization of the symmetric extension of a {Herglotz-Nevanlinna} function},
journal = {Czechoslovak Mathematical Journal},
pages = {117--134},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0455-21},
mrnumber = {4541092},
zbl = {07655758},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0455-21/}
}
TY - JOUR AU - Nedic, Mitja TI - An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function JO - Czechoslovak Mathematical Journal PY - 2023 SP - 117 EP - 134 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0455-21/ DO - 10.21136/CMJ.2022.0455-21 LA - en ID - 10_21136_CMJ_2022_0455_21 ER -
%0 Journal Article %A Nedic, Mitja %T An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function %J Czechoslovak Mathematical Journal %D 2023 %P 117-134 %V 73 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0455-21/ %R 10.21136/CMJ.2022.0455-21 %G en %F 10_21136_CMJ_2022_0455_21
Nedic, Mitja. An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 117-134. doi: 10.21136/CMJ.2022.0455-21
[1] Agler, J., McCarthy, J. E., Young, N. J.: Operator monotone functions and Löwner functions of several variables. Ann. Math. (2) 176 (2012), 1783-1826. | DOI | MR | JFM
[2] Akhiezer, N. I.: The Classical Moment Problem and Some Related Questions in Analysis. Hafner Publishing, New York (1965). | MR | JFM
[3] Aronszajn, N.: On a problem of Weyl in the theory of singular Sturm-Liouville equations. Am. J. Math. 79 (1957), 597-610. | DOI | MR | JFM
[4] Aronszajn, N., Brown, R. D.: Finite-dimensional perturbations of spectral problems and variational approximation methods for eigenvalue problems. I. Finite-dimensional perturbations. Stud. Math. 36 (1970), 1-76. | DOI | MR | JFM
[5] Bernland, A., Luger, A., Gustafsson, M.: Sum rules and constraints on passive systems. J. Phys. A, Math. Theor. 44 (2011), Article ID 145205, 20 pages. | DOI | MR | JFM
[6] Cauer, W.: The Poisson integral for functions with positive real part. Bull. Am. Math. Soc. 38 (1932), 713-717. | DOI | MR | JFM
[7] W. F. Donoghue, Jr.: On the perturbation of spectra. Commun. Pure Appl. Math. 18 (1965), 559-579. | DOI | MR | JFM
[8] Ivanenko, Y., Gustafsson, M., Jonsson, B. L. G., Luger, A., Nilsson, B., Nordebo, S., Toft, J.: Passive approximation and optimization using B-splines. SIAM J. Appl. Math. 79 (2019), 436-458. | DOI | MR | JFM
[9] Ivanenko, Y., Nedic, M., Gustafsson, M., Jonsson, B. L. G., Luger, A., Nordebo, S.: Quasi- Herglotz functions and convex optimization. Royal Soc. Open Sci. 7 (2020), Article ID 191541, 15 pages. | DOI
[10] Kac, I. S., Kreĭn, M. G.: $R$-functions -- analytic functions mapping the upper halfplane into itself. Nine Papers in Analysis American Mathematical Society Translations: Series 2, Volume 103. AMS, Providence (1974), 1-18. | DOI | JFM
[11] Koosis, P.: Introduction to $H_p$ Spaces. Cambridge Tracts in Mathematics 115. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM
[12] Luger, A., Nedic, M.: A characterization of Herglotz-Nevanlinna functions in two variables via integral representations. Ark. Mat. 55 (2017), 199-216. | DOI | MR | JFM
[13] Luger, A., Nedic, M.: Herglotz-Nevanlinna functions in several variables. J. Math. Anal. Appl. 472 (2019), 1189-1219. | DOI | MR | JFM
[14] Luger, A., Nedic, M.: On quasi-Herglotz functions in one variable. Available at , 35 pages. | arXiv | MR
[15] Luger, A., Nedic, M.: Geometric properties of measures related to holomorphic functions having positive imaginary or real part. J. Geom. Anal. 31 (2021), 2611-2638. | DOI | MR | JFM
[16] Nedic, M.: Characterizations of the Lebesgue measure and product measures related to holomorphic functions having non-negative imaginary or real part. Int. J. Math. 31 (2020), Article ID 2050102, 27 pages. | DOI | MR | JFM
[17] Nevanlinna, R.: Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momentenproblem. Ann. Acad. Sci. Fenn., Ser. A 18 (1922), 1-53 German \99999JFM99999 48.1226.02.
[18] Simon, B.: The classical moment problem as a self-adjoint finite difference operator. Adv. Math. 137 (1998), 82-203. | DOI | MR | JFM
[19] Vladimirov, V. S.: Holomorphic functions with non-negative imaginary part in a tubular region over a cone. Mat. Sb., Nov. Ser. 79 (1969), 128-152 Russian. | MR | JFM
[20] Vladimirov, V. S.: Generalized Functions in Mathematical Physics. Mir, Moscow (1979). | MR | JFM
Cité par Sources :