Keywords: Green algebra; automorphism group; weak Hopf algebra
@article{10_21136_CMJ_2022_0436_21,
author = {Cao, Liufeng and Su, Dong and Yao, Hua},
title = {Automorphism group of green algebra of weak {Hopf} algebra corresponding to {Sweedler} {Hopf} algebra},
journal = {Czechoslovak Mathematical Journal},
pages = {101--115},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0436-21},
mrnumber = {4541091},
zbl = {07655757},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0436-21/}
}
TY - JOUR AU - Cao, Liufeng AU - Su, Dong AU - Yao, Hua TI - Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra JO - Czechoslovak Mathematical Journal PY - 2023 SP - 101 EP - 115 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0436-21/ DO - 10.21136/CMJ.2022.0436-21 LA - en ID - 10_21136_CMJ_2022_0436_21 ER -
%0 Journal Article %A Cao, Liufeng %A Su, Dong %A Yao, Hua %T Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra %J Czechoslovak Mathematical Journal %D 2023 %P 101-115 %V 73 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0436-21/ %R 10.21136/CMJ.2022.0436-21 %G en %F 10_21136_CMJ_2022_0436_21
Cao, Liufeng; Su, Dong; Yao, Hua. Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 101-115. doi: 10.21136/CMJ.2022.0436-21
[1] Aizawa, N., Isaac, P. S.: Weak Hopf algebras corresponding to $U_q[sl_n]$. J. Math. Phys. 44 (2003), 5250-5267. | DOI | MR | JFM
[2] Bardakov, V. G., Neshchadim, M. V., Sosnovsky, Y. V.: Groups of triangular automorphisms of a free associative algebra and a polynomial algebra. J. Algebra 362 (2012), 201-220. | DOI | MR | JFM
[3] Beattie, M., Dăscălescu, S., Grünenfelder, L.: Constructing pointed Hopf algebras by Ore extensions. J. Algebra 225 (2000), 743-770. | DOI | MR | JFM
[4] Chen, H., Oystaeyen, F. Van, Zhang, Y.: The Green rings of Taft algebras. Proc. Am. Math. Soc. 142 (2014), 765-775. | DOI | MR | JFM
[5] Dăscălescu, S.: On the dimension of the space of integrals for finite dimensional bialgebras. Stud. Sci. Math. Hung. 45 (2008), 411-417. | DOI | MR | JFM
[6] Dicks, W.: Automorphisms of the polynomial ring in two variables. Publ., Secc. Mat., Univ. Autòn. Barc. 27 (1983), 155-162. | MR | JFM
[7] Drensky, V., Yu, J.-T.: Coordinates and automorphisms of polynomial and free associative algebra of rank three. Front. Math. China 2 (2007), 13-46. | DOI | MR | JFM
[8] Green, J. A.: The modular representation algebra of a finite group. Ill. J. Math. 6 (1962), 607-619. | DOI | MR | JFM
[9] Jia, T., Zhao, R., Li, L.: Automorphism group of Green ring of Sweedler Hopf algebra. Front. Math. China 11 (2016), 921-932. | DOI | MR | JFM
[10] Li, F.: Weak Hopf algebras and new solutions of the quantum Yang-Baxter equation. J. Algebra 208 (1998), 72-100. | DOI | MR | JFM
[11] Li, L., Zhang, Y.: The Green rings of the generalized Taft Hopf algebras. Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 275-288. | DOI | MR | JFM
[12] McKay, J. H., Wang, S. S.-S.: An elementary proof of the automorphism theorem for the polynomial ring in two variables. J. Pure Appl. Algebra 52 (1988), 91-102. | DOI | MR | JFM
[13] Perepechko, A.: On solvability of the automorphism group of a finite-dimensional algebra. J. Algebra 403 (2014), 455-458. | DOI | MR | JFM
[14] Shestakov, I. P., Umirbaev, U. U.: The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17 (2004), 197-227. | DOI | MR | JFM
[15] Su, D., Yang, S.: Automorphism group of representation ring of the weak Hopf algebra $\widetilde{H}_8$. Czech. Math. J. 68 (2018), 1131-1148. | DOI | MR | JFM
[16] Su, D., Yang, S.: Green rings of weak Hopf algebras based on generalized Taft algebras. Period. Math. Hung. 76 (2018), 229-242. | DOI | MR | JFM
[17] Taft, E. J.: The order of the antipode of finite-dimensional Hopf algebra. Proc. Natl. Acad. Sci. USA 68 (1971), 2631-2633. | DOI | MR | JFM
[18] Zhao, R., Yuan, C., Li, L.: The automorphism group of Green algebra of 9-dimensional Taft Hopf algebra. Algebra Colloq. 27 (2020), 767-798. | DOI | MR | JFM
Cité par Sources :