Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 101-115
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $r(\mathfrak {w}^0_2)$ be the Green ring of the weak Hopf algebra $\mathfrak {w}^0_2$ corresponding to Sweedler's 4-dimensional Hopf algebra $H_2$, and let ${\rm Aut}(R(\mathfrak {w}^0_2))$ be the automorphism group of the Green algebra $R(\mathfrak {w}^0_2)=r(\mathfrak {w}^0_2)\otimes _\mathbb {Z}\mathbb {C}$. We show that the quotient group ${\rm Aut}(R(\mathfrak {w}^0_2))/C_2\cong S_3$, where $C_2$ contains the identity map and is isomorphic to the infinite group $(\mathbb {C}^*,\times )$ and $S_3$ is the symmetric group of order 6.
Let $r(\mathfrak {w}^0_2)$ be the Green ring of the weak Hopf algebra $\mathfrak {w}^0_2$ corresponding to Sweedler's 4-dimensional Hopf algebra $H_2$, and let ${\rm Aut}(R(\mathfrak {w}^0_2))$ be the automorphism group of the Green algebra $R(\mathfrak {w}^0_2)=r(\mathfrak {w}^0_2)\otimes _\mathbb {Z}\mathbb {C}$. We show that the quotient group ${\rm Aut}(R(\mathfrak {w}^0_2))/C_2\cong S_3$, where $C_2$ contains the identity map and is isomorphic to the infinite group $(\mathbb {C}^*,\times )$ and $S_3$ is the symmetric group of order 6.
DOI : 10.21136/CMJ.2022.0436-21
Classification : 16W20, 19A22
Keywords: Green algebra; automorphism group; weak Hopf algebra
@article{10_21136_CMJ_2022_0436_21,
     author = {Cao, Liufeng and Su, Dong and Yao, Hua},
     title = {Automorphism group of green algebra of weak {Hopf} algebra corresponding to {Sweedler} {Hopf} algebra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {101--115},
     year = {2023},
     volume = {73},
     number = {1},
     doi = {10.21136/CMJ.2022.0436-21},
     mrnumber = {4541091},
     zbl = {07655757},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0436-21/}
}
TY  - JOUR
AU  - Cao, Liufeng
AU  - Su, Dong
AU  - Yao, Hua
TI  - Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 101
EP  - 115
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0436-21/
DO  - 10.21136/CMJ.2022.0436-21
LA  - en
ID  - 10_21136_CMJ_2022_0436_21
ER  - 
%0 Journal Article
%A Cao, Liufeng
%A Su, Dong
%A Yao, Hua
%T Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra
%J Czechoslovak Mathematical Journal
%D 2023
%P 101-115
%V 73
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0436-21/
%R 10.21136/CMJ.2022.0436-21
%G en
%F 10_21136_CMJ_2022_0436_21
Cao, Liufeng; Su, Dong; Yao, Hua. Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 101-115. doi: 10.21136/CMJ.2022.0436-21

[1] Aizawa, N., Isaac, P. S.: Weak Hopf algebras corresponding to $U_q[sl_n]$. J. Math. Phys. 44 (2003), 5250-5267. | DOI | MR | JFM

[2] Bardakov, V. G., Neshchadim, M. V., Sosnovsky, Y. V.: Groups of triangular automorphisms of a free associative algebra and a polynomial algebra. J. Algebra 362 (2012), 201-220. | DOI | MR | JFM

[3] Beattie, M., Dăscălescu, S., Grünenfelder, L.: Constructing pointed Hopf algebras by Ore extensions. J. Algebra 225 (2000), 743-770. | DOI | MR | JFM

[4] Chen, H., Oystaeyen, F. Van, Zhang, Y.: The Green rings of Taft algebras. Proc. Am. Math. Soc. 142 (2014), 765-775. | DOI | MR | JFM

[5] Dăscălescu, S.: On the dimension of the space of integrals for finite dimensional bialgebras. Stud. Sci. Math. Hung. 45 (2008), 411-417. | DOI | MR | JFM

[6] Dicks, W.: Automorphisms of the polynomial ring in two variables. Publ., Secc. Mat., Univ. Autòn. Barc. 27 (1983), 155-162. | MR | JFM

[7] Drensky, V., Yu, J.-T.: Coordinates and automorphisms of polynomial and free associative algebra of rank three. Front. Math. China 2 (2007), 13-46. | DOI | MR | JFM

[8] Green, J. A.: The modular representation algebra of a finite group. Ill. J. Math. 6 (1962), 607-619. | DOI | MR | JFM

[9] Jia, T., Zhao, R., Li, L.: Automorphism group of Green ring of Sweedler Hopf algebra. Front. Math. China 11 (2016), 921-932. | DOI | MR | JFM

[10] Li, F.: Weak Hopf algebras and new solutions of the quantum Yang-Baxter equation. J. Algebra 208 (1998), 72-100. | DOI | MR | JFM

[11] Li, L., Zhang, Y.: The Green rings of the generalized Taft Hopf algebras. Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 275-288. | DOI | MR | JFM

[12] McKay, J. H., Wang, S. S.-S.: An elementary proof of the automorphism theorem for the polynomial ring in two variables. J. Pure Appl. Algebra 52 (1988), 91-102. | DOI | MR | JFM

[13] Perepechko, A.: On solvability of the automorphism group of a finite-dimensional algebra. J. Algebra 403 (2014), 455-458. | DOI | MR | JFM

[14] Shestakov, I. P., Umirbaev, U. U.: The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17 (2004), 197-227. | DOI | MR | JFM

[15] Su, D., Yang, S.: Automorphism group of representation ring of the weak Hopf algebra $\widetilde{H}_8$. Czech. Math. J. 68 (2018), 1131-1148. | DOI | MR | JFM

[16] Su, D., Yang, S.: Green rings of weak Hopf algebras based on generalized Taft algebras. Period. Math. Hung. 76 (2018), 229-242. | DOI | MR | JFM

[17] Taft, E. J.: The order of the antipode of finite-dimensional Hopf algebra. Proc. Natl. Acad. Sci. USA 68 (1971), 2631-2633. | DOI | MR | JFM

[18] Zhao, R., Yuan, C., Li, L.: The automorphism group of Green algebra of 9-dimensional Taft Hopf algebra. Algebra Colloq. 27 (2020), 767-798. | DOI | MR | JFM

Cité par Sources :