Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 101-115
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $r(\mathfrak {w}^0_2)$ be the Green ring of the weak Hopf algebra $\mathfrak {w}^0_2$ corresponding to Sweedler's 4-dimensional Hopf algebra $H_2$, and let ${\rm Aut}(R(\mathfrak {w}^0_2))$ be the automorphism group of the Green algebra $R(\mathfrak {w}^0_2)=r(\mathfrak {w}^0_2)\otimes _\mathbb {Z}\mathbb {C}$. We show that the quotient group ${\rm Aut}(R(\mathfrak {w}^0_2))/C_2\cong S_3$, where $C_2$ contains the identity map and is isomorphic to the infinite group $(\mathbb {C}^*,\times )$ and $S_3$ is the symmetric group of order 6.
Let $r(\mathfrak {w}^0_2)$ be the Green ring of the weak Hopf algebra $\mathfrak {w}^0_2$ corresponding to Sweedler's 4-dimensional Hopf algebra $H_2$, and let ${\rm Aut}(R(\mathfrak {w}^0_2))$ be the automorphism group of the Green algebra $R(\mathfrak {w}^0_2)=r(\mathfrak {w}^0_2)\otimes _\mathbb {Z}\mathbb {C}$. We show that the quotient group ${\rm Aut}(R(\mathfrak {w}^0_2))/C_2\cong S_3$, where $C_2$ contains the identity map and is isomorphic to the infinite group $(\mathbb {C}^*,\times )$ and $S_3$ is the symmetric group of order 6.
DOI :
10.21136/CMJ.2022.0436-21
Classification :
16W20, 19A22
Keywords: Green algebra; automorphism group; weak Hopf algebra
Keywords: Green algebra; automorphism group; weak Hopf algebra
@article{10_21136_CMJ_2022_0436_21,
author = {Cao, Liufeng and Su, Dong and Yao, Hua},
title = {Automorphism group of green algebra of weak {Hopf} algebra corresponding to {Sweedler} {Hopf} algebra},
journal = {Czechoslovak Mathematical Journal},
pages = {101--115},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0436-21},
mrnumber = {4541091},
zbl = {07655757},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0436-21/}
}
TY - JOUR AU - Cao, Liufeng AU - Su, Dong AU - Yao, Hua TI - Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra JO - Czechoslovak Mathematical Journal PY - 2023 SP - 101 EP - 115 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0436-21/ DO - 10.21136/CMJ.2022.0436-21 LA - en ID - 10_21136_CMJ_2022_0436_21 ER -
%0 Journal Article %A Cao, Liufeng %A Su, Dong %A Yao, Hua %T Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra %J Czechoslovak Mathematical Journal %D 2023 %P 101-115 %V 73 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0436-21/ %R 10.21136/CMJ.2022.0436-21 %G en %F 10_21136_CMJ_2022_0436_21
Cao, Liufeng; Su, Dong; Yao, Hua. Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 101-115. doi: 10.21136/CMJ.2022.0436-21
Cité par Sources :