Keywords: nilpotent; tripotent; 2-idempotent; exchange ring
@article{10_21136_CMJ_2022_0427_21,
author = {Chen, Huanyin and Sheibani, Marjan and Ashrafi, Nahid},
title = {Rings generalized by tripotents and nilpotents},
journal = {Czechoslovak Mathematical Journal},
pages = {1175--1182},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0427-21},
mrnumber = {4517605},
zbl = {07655792},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0427-21/}
}
TY - JOUR AU - Chen, Huanyin AU - Sheibani, Marjan AU - Ashrafi, Nahid TI - Rings generalized by tripotents and nilpotents JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1175 EP - 1182 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0427-21/ DO - 10.21136/CMJ.2022.0427-21 LA - en ID - 10_21136_CMJ_2022_0427_21 ER -
%0 Journal Article %A Chen, Huanyin %A Sheibani, Marjan %A Ashrafi, Nahid %T Rings generalized by tripotents and nilpotents %J Czechoslovak Mathematical Journal %D 2022 %P 1175-1182 %V 72 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0427-21/ %R 10.21136/CMJ.2022.0427-21 %G en %F 10_21136_CMJ_2022_0427_21
Chen, Huanyin; Sheibani, Marjan; Ashrafi, Nahid. Rings generalized by tripotents and nilpotents. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1175-1182. doi: 10.21136/CMJ.2022.0427-21
[1] Abyzov, A. N.: Strongly $q$-nil-clean rings. Sib. Math. J. 60 (2019), 197-208. | DOI | MR | JFM
[2] Chen, H.: Rings Related Stable Range Conditions. Series in Algebra 11. World Scientific, Hackensack (2011). | DOI | MR | JFM
[3] Chen, H., Sheibani, M.: Strongly 2-nil-clean rings. J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. | DOI | MR | JFM
[4] Danchev, P. V., Lam, T.-Y.: Rings with unipotent units. Publ. Math. 88 (2016), 449-466. | DOI | MR | JFM
[5] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. | DOI | MR | JFM
[6] Koşan, M. T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings. J. Pure Appl. Algebra 220 (2016), 633-646. | DOI | MR | JFM
[7] Koşan, M. T., Yildirim, T., Zhou, Y.: Rings whose elements are the sum of a tripotent and an element from the Jacobson radical. Can. Math. Bull. 62 (2019), 810-821. | DOI | MR | JFM
[8] Koşan, M. T., Yildirim, T., Zhou, Y.: Rings with $x^n-x$ nilpotent. J. Algebra Appl. 19 (2020), Article ID 2050065, 14 pages. | DOI | MR | JFM
[9] Ying, Z., Koşan, M. T., Zhou, Y.: Rings in which every element is a sum of two tripotents. Can. Math. Bull. 59 (2016), 661-672. | DOI | MR | JFM
[10] Zhou, Y.: Rings in which elements are sums of nilpotents, idempotents and tripotents. J. Algebra Appl. 17 (2018), Article ID 1850009, 7 pages. | DOI | MR | JFM
Cité par Sources :