On the quasi-periodic $p$-adic Ruban continued fractions
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1157-1166.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study a family of quasi periodic $p$-adic Ruban continued fractions in the $p$-adic field $\mathbb {Q}_p$ and we give a criterion of a quadratic or transcendental $p$-adic number which based on the $p$-adic version of the subspace theorem due to Schlickewei.
DOI : 10.21136/CMJ.2022.0409-21
Classification : 11A55, 11D88, 11J81
Keywords: continued fraction; $p$-adic number; transcendence; subspace theorem
@article{10_21136_CMJ_2022_0409_21,
     author = {Ammous, Basma and Ben Mahmoud, Nour and Hbaib, Mohamed},
     title = {On the quasi-periodic $p$-adic {Ruban} continued fractions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1157--1166},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2022},
     doi = {10.21136/CMJ.2022.0409-21},
     mrnumber = {4517603},
     zbl = {07655790},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0409-21/}
}
TY  - JOUR
AU  - Ammous, Basma
AU  - Ben Mahmoud, Nour
AU  - Hbaib, Mohamed
TI  - On the quasi-periodic $p$-adic Ruban continued fractions
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1157
EP  - 1166
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0409-21/
DO  - 10.21136/CMJ.2022.0409-21
LA  - en
ID  - 10_21136_CMJ_2022_0409_21
ER  - 
%0 Journal Article
%A Ammous, Basma
%A Ben Mahmoud, Nour
%A Hbaib, Mohamed
%T On the quasi-periodic $p$-adic Ruban continued fractions
%J Czechoslovak Mathematical Journal
%D 2022
%P 1157-1166
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0409-21/
%R 10.21136/CMJ.2022.0409-21
%G en
%F 10_21136_CMJ_2022_0409_21
Ammous, Basma; Ben Mahmoud, Nour; Hbaib, Mohamed. On the quasi-periodic $p$-adic Ruban continued fractions. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1157-1166. doi : 10.21136/CMJ.2022.0409-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0409-21/

Cité par Sources :