On the quasi-periodic $p$-adic Ruban continued fractions
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1157-1166
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study a family of quasi periodic $p$-adic Ruban continued fractions in the $p$-adic field $\mathbb {Q}_p$ and we give a criterion of a quadratic or transcendental $p$-adic number which based on the $p$-adic version of the subspace theorem due to Schlickewei.
We study a family of quasi periodic $p$-adic Ruban continued fractions in the $p$-adic field $\mathbb {Q}_p$ and we give a criterion of a quadratic or transcendental $p$-adic number which based on the $p$-adic version of the subspace theorem due to Schlickewei.
DOI : 10.21136/CMJ.2022.0409-21
Classification : 11A55, 11D88, 11J81
Keywords: continued fraction; $p$-adic number; transcendence; subspace theorem
@article{10_21136_CMJ_2022_0409_21,
     author = {Ammous, Basma and Ben Mahmoud, Nour and Hbaib, Mohamed},
     title = {On the quasi-periodic $p$-adic {Ruban} continued fractions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1157--1166},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0409-21},
     mrnumber = {4517603},
     zbl = {07655790},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0409-21/}
}
TY  - JOUR
AU  - Ammous, Basma
AU  - Ben Mahmoud, Nour
AU  - Hbaib, Mohamed
TI  - On the quasi-periodic $p$-adic Ruban continued fractions
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1157
EP  - 1166
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0409-21/
DO  - 10.21136/CMJ.2022.0409-21
LA  - en
ID  - 10_21136_CMJ_2022_0409_21
ER  - 
%0 Journal Article
%A Ammous, Basma
%A Ben Mahmoud, Nour
%A Hbaib, Mohamed
%T On the quasi-periodic $p$-adic Ruban continued fractions
%J Czechoslovak Mathematical Journal
%D 2022
%P 1157-1166
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0409-21/
%R 10.21136/CMJ.2022.0409-21
%G en
%F 10_21136_CMJ_2022_0409_21
Ammous, Basma; Ben Mahmoud, Nour; Hbaib, Mohamed. On the quasi-periodic $p$-adic Ruban continued fractions. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1157-1166. doi: 10.21136/CMJ.2022.0409-21

[1] Adamczewski, B., Bugeaud, Y.: On the decimal expansion of algebraic numbers. Fiz. Mat. Fak. Moksl. Semin. Darb. 8 (2005), 5-13. | MR | JFM

[2] Adamczewski, B., Bugeaud, Y.: On the complexity of algebraic numbers. I. Expansions in integer bases. Ann. Math. (2) 165 (2007), 547-565. | DOI | MR | JFM

[3] Adamczewski, B., Bugeaud, Y.: On the Maillet-Baker continued fractions. J. Reine Angew. Math. 606 (2007), 105-121. | DOI | MR | JFM

[4] Baker, A.: Continued fractions of transcendental numbers. Mathematika, Lond. 9 (1962), 1-8. | DOI | MR | JFM

[5] Laohakosol, V.: A characterization of rational numbers by $p$-adic Ruban continued fractions. J. Aust. Math. Soc., Ser. A 39 (1985), 300-305. | DOI | MR | JFM

[6] LeVeque, W. J.: Topics in Number Theory. II. Addison-Wesley, Reading (1956). | MR | JFM

[7] Mahler, K.: Zur Approximation $p$-adischer Irrationalzahlen. Nieuw Arch. Wiskd. 18 (1934), 22-34 German. | JFM

[8] Maillet, E.: Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions. Gauthier-Villars, Paris (1906), French \99999JFM99999 37.0237.02.

[9] Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften 322. Springer, Berlin (1999). | DOI | MR | JFM

[10] Ooto, T.: Transcendental $p$-adic continued fractions. Math. Z. 287 (2017), 1053-1064. | DOI | MR | JFM

[11] Ruban, A. A.: Some metric properties of $p$-adic numbers. Sib. Math. J. 11 (1970), 176-180. | DOI | MR | JFM

[12] Schlickewei, H. P.: The $p$-adic Thue-Siegel-Roth-Schmidt theorem. Arch. Math. 29 (1977), 267-270. | DOI | MR | JFM

[13] Schmidt, W. M.: Diophantine Approximation. Lecture Notes in Mathematics 785. Springer, Berlin (1980). | DOI | MR | JFM

[14] Wang, L.: $P$-adic continued fractions. I. Sci. Sin., Ser. A 28 (1985), 1009-1017. | MR | JFM

Cité par Sources :