Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 49-70
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We consider the Keller-Segel-Navier-Stokes system $$ \begin{cases} n_t+{\bf u}\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla v ), x\in \Omega ,\ t>0,\\ v_t +{\bf u}\cdot \nabla v=\Delta v -v+w, \in \Omega ,\ t>0,\\ w_t+{\bf u}\cdot \nabla w=\Delta w -w+n, \in \Omega ,\ t>0,\\ {\bf {u}}_t + ({\bf {u}}\cdot \nabla ){\bf {u}} = \Delta {\bf {u}} + \nabla P + n\nabla \phi ,\ \nabla \cdot {\bf u}=0, \in \Omega ,\ t>0, \end{cases} $$ which is considered in bounded domain $\Omega \subset \mathbb {R}^N$ $(N \in \{2,3\})$ with smooth boundary, where $\phi \in C^{1+\delta }(\overline \Omega )$ with $\delta \in (0,1)$. We show that if the initial data $\|n_0\|_{L^{{N}/{2}}(\Omega )}$, $\|\nabla v_0\|_{L^N(\Omega )}$, $\|\nabla w_0\|_{L^N(\Omega )}$ and $\|{\bf u}_0\|_{L^N(\Omega )}$ is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state $({\bar n}_0,{\bar n}_0,{\bar n}_0,0)$ exponentially with ${\bar n}_0:=(1/|\Omega |)\int _{\Omega }n_0(x){\rm d}x$.
We consider the Keller-Segel-Navier-Stokes system $$ \begin{cases} n_t+{\bf u}\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla v ), x\in \Omega ,\ t>0,\\ v_t +{\bf u}\cdot \nabla v=\Delta v -v+w, \in \Omega ,\ t>0,\\ w_t+{\bf u}\cdot \nabla w=\Delta w -w+n, \in \Omega ,\ t>0,\\ {\bf {u}}_t + ({\bf {u}}\cdot \nabla ){\bf {u}} = \Delta {\bf {u}} + \nabla P + n\nabla \phi ,\ \nabla \cdot {\bf u}=0, \in \Omega ,\ t>0, \end{cases} $$ which is considered in bounded domain $\Omega \subset \mathbb {R}^N$ $(N \in \{2,3\})$ with smooth boundary, where $\phi \in C^{1+\delta }(\overline \Omega )$ with $\delta \in (0,1)$. We show that if the initial data $\|n_0\|_{L^{{N}/{2}}(\Omega )}$, $\|\nabla v_0\|_{L^N(\Omega )}$, $\|\nabla w_0\|_{L^N(\Omega )}$ and $\|{\bf u}_0\|_{L^N(\Omega )}$ is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state $({\bar n}_0,{\bar n}_0,{\bar n}_0,0)$ exponentially with ${\bar n}_0:=(1/|\Omega |)\int _{\Omega }n_0(x){\rm d}x$.
DOI :
10.21136/CMJ.2022.0399-21
Classification :
35B35, 35B40, 35K55, 35Q35, 92C17
Keywords: Keller-Segel-Navier-Stokes; global solution; decay estimate; indirect process
Keywords: Keller-Segel-Navier-Stokes; global solution; decay estimate; indirect process
@article{10_21136_CMJ_2022_0399_21,
author = {Yang, Lu and Liu, Xi and Hou, Zhibo},
title = {Asymptotic behavior of small-data solutions to a {Keller-Segel-Navier-Stokes} system with indirect signal production},
journal = {Czechoslovak Mathematical Journal},
pages = {49--70},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0399-21},
mrnumber = {4541089},
zbl = {07655755},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/}
}
TY - JOUR AU - Yang, Lu AU - Liu, Xi AU - Hou, Zhibo TI - Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production JO - Czechoslovak Mathematical Journal PY - 2023 SP - 49 EP - 70 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/ DO - 10.21136/CMJ.2022.0399-21 LA - en ID - 10_21136_CMJ_2022_0399_21 ER -
%0 Journal Article %A Yang, Lu %A Liu, Xi %A Hou, Zhibo %T Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production %J Czechoslovak Mathematical Journal %D 2023 %P 49-70 %V 73 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/ %R 10.21136/CMJ.2022.0399-21 %G en %F 10_21136_CMJ_2022_0399_21
Yang, Lu; Liu, Xi; Hou, Zhibo. Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 49-70. doi: 10.21136/CMJ.2022.0399-21
Cité par Sources :