Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 49-70.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the Keller-Segel-Navier-Stokes system $$ \begin{cases} n_t+{\bf u}\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla v ), x\in \Omega ,\ t>0,\\ v_t +{\bf u}\cdot \nabla v=\Delta v -v+w, \in \Omega ,\ t>0,\\ w_t+{\bf u}\cdot \nabla w=\Delta w -w+n, \in \Omega ,\ t>0,\\ {\bf {u}}_t + ({\bf {u}}\cdot \nabla ){\bf {u}} = \Delta {\bf {u}} + \nabla P + n\nabla \phi ,\ \nabla \cdot {\bf u}=0, \in \Omega ,\ t>0, \end{cases} $$ which is considered in bounded domain $\Omega \subset \mathbb {R}^N$ $(N \in \{2,3\})$ with smooth boundary, where $\phi \in C^{1+\delta }(\overline \Omega )$ with $\delta \in (0,1)$. We show that if the initial data $\|n_0\|_{L^{{N}/{2}}(\Omega )}$, $\|\nabla v_0\|_{L^N(\Omega )}$, $\|\nabla w_0\|_{L^N(\Omega )}$ and $\|{\bf u}_0\|_{L^N(\Omega )}$ is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state $({\bar n}_0,{\bar n}_0,{\bar n}_0,0)$ exponentially with ${\bar n}_0:=(1/|\Omega |)\int _{\Omega }n_0(x){\rm d}x$.
DOI : 10.21136/CMJ.2022.0399-21
Classification : 35B35, 35B40, 35K55, 35Q35, 92C17
Keywords: Keller-Segel-Navier-Stokes; global solution; decay estimate; indirect process
@article{10_21136_CMJ_2022_0399_21,
     author = {Yang, Lu and Liu, Xi and Hou, Zhibo},
     title = {Asymptotic behavior of small-data solutions to a {Keller-Segel-Navier-Stokes} system with indirect signal production},
     journal = {Czechoslovak Mathematical Journal},
     pages = {49--70},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2023},
     doi = {10.21136/CMJ.2022.0399-21},
     mrnumber = {4541089},
     zbl = {07655755},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/}
}
TY  - JOUR
AU  - Yang, Lu
AU  - Liu, Xi
AU  - Hou, Zhibo
TI  - Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 49
EP  - 70
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/
DO  - 10.21136/CMJ.2022.0399-21
LA  - en
ID  - 10_21136_CMJ_2022_0399_21
ER  - 
%0 Journal Article
%A Yang, Lu
%A Liu, Xi
%A Hou, Zhibo
%T Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production
%J Czechoslovak Mathematical Journal
%D 2023
%P 49-70
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/
%R 10.21136/CMJ.2022.0399-21
%G en
%F 10_21136_CMJ_2022_0399_21
Yang, Lu; Liu, Xi; Hou, Zhibo. Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 49-70. doi : 10.21136/CMJ.2022.0399-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/

Cité par Sources :