Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 49-70
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the Keller-Segel-Navier-Stokes system $$ \begin{cases} n_t+{\bf u}\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla v ), x\in \Omega ,\ t>0,\\ v_t +{\bf u}\cdot \nabla v=\Delta v -v+w, \in \Omega ,\ t>0,\\ w_t+{\bf u}\cdot \nabla w=\Delta w -w+n, \in \Omega ,\ t>0,\\ {\bf {u}}_t + ({\bf {u}}\cdot \nabla ){\bf {u}} = \Delta {\bf {u}} + \nabla P + n\nabla \phi ,\ \nabla \cdot {\bf u}=0, \in \Omega ,\ t>0, \end{cases} $$ which is considered in bounded domain $\Omega \subset \mathbb {R}^N$ $(N \in \{2,3\})$ with smooth boundary, where $\phi \in C^{1+\delta }(\overline \Omega )$ with $\delta \in (0,1)$. We show that if the initial data $\|n_0\|_{L^{{N}/{2}}(\Omega )}$, $\|\nabla v_0\|_{L^N(\Omega )}$, $\|\nabla w_0\|_{L^N(\Omega )}$ and $\|{\bf u}_0\|_{L^N(\Omega )}$ is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state $({\bar n}_0,{\bar n}_0,{\bar n}_0,0)$ exponentially with ${\bar n}_0:=(1/|\Omega |)\int _{\Omega }n_0(x){\rm d}x$.
We consider the Keller-Segel-Navier-Stokes system $$ \begin{cases} n_t+{\bf u}\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla v ), x\in \Omega ,\ t>0,\\ v_t +{\bf u}\cdot \nabla v=\Delta v -v+w, \in \Omega ,\ t>0,\\ w_t+{\bf u}\cdot \nabla w=\Delta w -w+n, \in \Omega ,\ t>0,\\ {\bf {u}}_t + ({\bf {u}}\cdot \nabla ){\bf {u}} = \Delta {\bf {u}} + \nabla P + n\nabla \phi ,\ \nabla \cdot {\bf u}=0, \in \Omega ,\ t>0, \end{cases} $$ which is considered in bounded domain $\Omega \subset \mathbb {R}^N$ $(N \in \{2,3\})$ with smooth boundary, where $\phi \in C^{1+\delta }(\overline \Omega )$ with $\delta \in (0,1)$. We show that if the initial data $\|n_0\|_{L^{{N}/{2}}(\Omega )}$, $\|\nabla v_0\|_{L^N(\Omega )}$, $\|\nabla w_0\|_{L^N(\Omega )}$ and $\|{\bf u}_0\|_{L^N(\Omega )}$ is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state $({\bar n}_0,{\bar n}_0,{\bar n}_0,0)$ exponentially with ${\bar n}_0:=(1/|\Omega |)\int _{\Omega }n_0(x){\rm d}x$.
DOI : 10.21136/CMJ.2022.0399-21
Classification : 35B35, 35B40, 35K55, 35Q35, 92C17
Keywords: Keller-Segel-Navier-Stokes; global solution; decay estimate; indirect process
@article{10_21136_CMJ_2022_0399_21,
     author = {Yang, Lu and Liu, Xi and Hou, Zhibo},
     title = {Asymptotic behavior of small-data solutions to a {Keller-Segel-Navier-Stokes} system with indirect signal production},
     journal = {Czechoslovak Mathematical Journal},
     pages = {49--70},
     year = {2023},
     volume = {73},
     number = {1},
     doi = {10.21136/CMJ.2022.0399-21},
     mrnumber = {4541089},
     zbl = {07655755},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/}
}
TY  - JOUR
AU  - Yang, Lu
AU  - Liu, Xi
AU  - Hou, Zhibo
TI  - Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 49
EP  - 70
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/
DO  - 10.21136/CMJ.2022.0399-21
LA  - en
ID  - 10_21136_CMJ_2022_0399_21
ER  - 
%0 Journal Article
%A Yang, Lu
%A Liu, Xi
%A Hou, Zhibo
%T Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production
%J Czechoslovak Mathematical Journal
%D 2023
%P 49-70
%V 73
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/
%R 10.21136/CMJ.2022.0399-21
%G en
%F 10_21136_CMJ_2022_0399_21
Yang, Lu; Liu, Xi; Hou, Zhibo. Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 49-70. doi: 10.21136/CMJ.2022.0399-21

[1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. | DOI | MR | JFM

[2] Cao, X.: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35 (2015), 1891-1904. | DOI | MR | JFM

[3] Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 107, 39 pages. | DOI | MR | JFM

[4] Corrias, L., Perthame, B.: Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces. Math. Comput. Modelling 47 (2008), 755-764. | DOI | MR | JFM

[5] Espejo, E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal., Real World Appl. 21 (2015), 110-126. | DOI | MR | JFM

[6] Fujie, K., Senba, T.: Application of an Adams type inequality to a two-chemical substances chemotaxis system. J. Differ. Equations 263 (2017), 88-148. | DOI | MR | JFM

[7] Fujie, K., Senba, T.: Blowup of solutions to a two-chemical substances chemotaxis system in the critical dimension. J. Differ. Equations 266 (2019), 942-976. | DOI | MR | JFM

[8] Hillen, T., Painter, K. J.: A user's guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), 183-217. | DOI | MR | JFM

[9] Horstmann, D.: From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. | MR | JFM

[10] Jin, H.-Y.: Boundedness of the attraction-repulsion Keller-Segel system. J. Math. Anal. Appl. 422 (2015), 1463-1478. | DOI | MR | JFM

[11] Li, X., Xiao, Y.: Global existence and boundedness in a 2D Keller-Segel-Stokes system. Nonlinear Anal., Real World Appl. 37 (2017), 14-30. | DOI | MR | JFM

[12] Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equations 262 (2017), 5271-5305. | DOI | MR | JFM

[13] Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A.: Chemotactic signaling, microglia, and Alzheimer's disease senile plagues: Is there a connection?. Bull. Math. Biol. 65 (2003), 693-730. | DOI | JFM

[14] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj, Ser. Int. 40 (1997), 411-433. | MR | JFM

[15] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469. | MR | JFM

[16] Tao, Y., Wang, Z.-A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23 (2013), 1-36. | DOI | MR | JFM

[17] Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66 (2015), 2555-2573. | DOI | MR | JFM

[18] Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system. Z. Angew. Math. Phys. 67 (2016), Article ID 138, 23 pages. | DOI | MR | JFM

[19] Wang, Y.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27 (2017), 2745-2780. | DOI | MR | JFM

[20] Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018), 421-466. | DOI | MR | JFM

[21] Wang, Y., Yang, L.: Boundedness in a chemotaxis-fluid system involving a saturated sensitivity and indirect signal production mechanism. J. Differ. Equations 287 (2021), 460-490. | DOI | MR | JFM

[22] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equations 248 (2010), 2889-2905. | DOI | MR | JFM

[23] Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equations 37 (2012), 319-351. | DOI | MR | JFM

[24] Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization. J. Funct. Anal. 276 (2019), 1339-1401. | DOI | MR | JFM

[25] Winkler, M.: Small-mass solutions in the two-dimensional Keller-Segel system coupled to Navier-Stokes equations. SIAM J. Math. Anal. 52 (2020), 2041-2080. | DOI | MR | JFM

[26] Winkler, M.: Reaction-driven relaxation in three-dimensional Keller-Segel-Navier-Stokes interaction. Commun. Math. Phys. 389 (2022), 439-489. | DOI | MR | JFM

[27] Yu, H., Wang, W., Zheng, S.: Global classical solutions to the Keller-Segel-Navier-Stokes system with matrix-valued sensitivity. J. Math. Anal. Appl. 461 (2018), 1748-1770. | DOI | MR | JFM

[28] Yu, P.: Blow-up prevention by saturated chemotactic sensitivity in a 2D Keller-Segel-Stokes system. Acta Appl. Math. 169 (2020), 475-497. | DOI | MR | JFM

[29] Zhang, W., Niu, P., Liu, S.: Large time behavior in a chemotaxis model with logistic growth and indirect signal production. Nonlinear Anal., Real World Appl. 50 (2019), 484-497. | DOI | MR | JFM

Cité par Sources :