Keywords: Keller-Segel-Navier-Stokes; global solution; decay estimate; indirect process
@article{10_21136_CMJ_2022_0399_21,
author = {Yang, Lu and Liu, Xi and Hou, Zhibo},
title = {Asymptotic behavior of small-data solutions to a {Keller-Segel-Navier-Stokes} system with indirect signal production},
journal = {Czechoslovak Mathematical Journal},
pages = {49--70},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0399-21},
mrnumber = {4541089},
zbl = {07655755},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/}
}
TY - JOUR AU - Yang, Lu AU - Liu, Xi AU - Hou, Zhibo TI - Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production JO - Czechoslovak Mathematical Journal PY - 2023 SP - 49 EP - 70 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/ DO - 10.21136/CMJ.2022.0399-21 LA - en ID - 10_21136_CMJ_2022_0399_21 ER -
%0 Journal Article %A Yang, Lu %A Liu, Xi %A Hou, Zhibo %T Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production %J Czechoslovak Mathematical Journal %D 2023 %P 49-70 %V 73 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0399-21/ %R 10.21136/CMJ.2022.0399-21 %G en %F 10_21136_CMJ_2022_0399_21
Yang, Lu; Liu, Xi; Hou, Zhibo. Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 49-70. doi: 10.21136/CMJ.2022.0399-21
[1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. | DOI | MR | JFM
[2] Cao, X.: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35 (2015), 1891-1904. | DOI | MR | JFM
[3] Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 107, 39 pages. | DOI | MR | JFM
[4] Corrias, L., Perthame, B.: Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces. Math. Comput. Modelling 47 (2008), 755-764. | DOI | MR | JFM
[5] Espejo, E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal., Real World Appl. 21 (2015), 110-126. | DOI | MR | JFM
[6] Fujie, K., Senba, T.: Application of an Adams type inequality to a two-chemical substances chemotaxis system. J. Differ. Equations 263 (2017), 88-148. | DOI | MR | JFM
[7] Fujie, K., Senba, T.: Blowup of solutions to a two-chemical substances chemotaxis system in the critical dimension. J. Differ. Equations 266 (2019), 942-976. | DOI | MR | JFM
[8] Hillen, T., Painter, K. J.: A user's guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), 183-217. | DOI | MR | JFM
[9] Horstmann, D.: From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. | MR | JFM
[10] Jin, H.-Y.: Boundedness of the attraction-repulsion Keller-Segel system. J. Math. Anal. Appl. 422 (2015), 1463-1478. | DOI | MR | JFM
[11] Li, X., Xiao, Y.: Global existence and boundedness in a 2D Keller-Segel-Stokes system. Nonlinear Anal., Real World Appl. 37 (2017), 14-30. | DOI | MR | JFM
[12] Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equations 262 (2017), 5271-5305. | DOI | MR | JFM
[13] Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A.: Chemotactic signaling, microglia, and Alzheimer's disease senile plagues: Is there a connection?. Bull. Math. Biol. 65 (2003), 693-730. | DOI | JFM
[14] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj, Ser. Int. 40 (1997), 411-433. | MR | JFM
[15] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469. | MR | JFM
[16] Tao, Y., Wang, Z.-A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23 (2013), 1-36. | DOI | MR | JFM
[17] Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66 (2015), 2555-2573. | DOI | MR | JFM
[18] Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system. Z. Angew. Math. Phys. 67 (2016), Article ID 138, 23 pages. | DOI | MR | JFM
[19] Wang, Y.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27 (2017), 2745-2780. | DOI | MR | JFM
[20] Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018), 421-466. | DOI | MR | JFM
[21] Wang, Y., Yang, L.: Boundedness in a chemotaxis-fluid system involving a saturated sensitivity and indirect signal production mechanism. J. Differ. Equations 287 (2021), 460-490. | DOI | MR | JFM
[22] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equations 248 (2010), 2889-2905. | DOI | MR | JFM
[23] Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equations 37 (2012), 319-351. | DOI | MR | JFM
[24] Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization. J. Funct. Anal. 276 (2019), 1339-1401. | DOI | MR | JFM
[25] Winkler, M.: Small-mass solutions in the two-dimensional Keller-Segel system coupled to Navier-Stokes equations. SIAM J. Math. Anal. 52 (2020), 2041-2080. | DOI | MR | JFM
[26] Winkler, M.: Reaction-driven relaxation in three-dimensional Keller-Segel-Navier-Stokes interaction. Commun. Math. Phys. 389 (2022), 439-489. | DOI | MR | JFM
[27] Yu, H., Wang, W., Zheng, S.: Global classical solutions to the Keller-Segel-Navier-Stokes system with matrix-valued sensitivity. J. Math. Anal. Appl. 461 (2018), 1748-1770. | DOI | MR | JFM
[28] Yu, P.: Blow-up prevention by saturated chemotactic sensitivity in a 2D Keller-Segel-Stokes system. Acta Appl. Math. 169 (2020), 475-497. | DOI | MR | JFM
[29] Zhang, W., Niu, P., Liu, S.: Large time behavior in a chemotaxis model with logistic growth and indirect signal production. Nonlinear Anal., Real World Appl. 50 (2019), 484-497. | DOI | MR | JFM
Cité par Sources :