Keywords: cyclic quartic field; cyclotomic $\mathbb Z_2$-extension; 2-Iwasawa module; 2-class group; 2-rank
@article{10_21136_CMJ_2022_0398_21,
author = {Jerrari, Idriss and Azizi, Abdelmalek},
title = {On the structure of the {2-Iwasawa} module of some number fields of degree 16},
journal = {Czechoslovak Mathematical Journal},
pages = {1145--1156},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0398-21},
mrnumber = {4517602},
zbl = {07655789},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0398-21/}
}
TY - JOUR AU - Jerrari, Idriss AU - Azizi, Abdelmalek TI - On the structure of the 2-Iwasawa module of some number fields of degree 16 JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1145 EP - 1156 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0398-21/ DO - 10.21136/CMJ.2022.0398-21 LA - en ID - 10_21136_CMJ_2022_0398_21 ER -
%0 Journal Article %A Jerrari, Idriss %A Azizi, Abdelmalek %T On the structure of the 2-Iwasawa module of some number fields of degree 16 %J Czechoslovak Mathematical Journal %D 2022 %P 1145-1156 %V 72 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0398-21/ %R 10.21136/CMJ.2022.0398-21 %G en %F 10_21136_CMJ_2022_0398_21
Jerrari, Idriss; Azizi, Abdelmalek. On the structure of the 2-Iwasawa module of some number fields of degree 16. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1145-1156. doi: 10.21136/CMJ.2022.0398-21
[1] Azizi, A., Jerrari, I., Zekhnini, A., Talbi, M.: On the second 2-class group $ Gal(K_2^{(2)}/K)$ of some imaginary quartic cyclic number field $K$. J. Number Theory 177 (2017), 562-588. | DOI | MR | JFM
[2] Brown, E., Parry, C. J.: The 2-class group of certain biquadratic number fields. J. Reine Angew. Math. 295 (1977), 61-71. | DOI | MR | JFM
[3] Chems-Eddin, M. M.: The 2-Iwasawa module over certain octic elementary fields. Available at , 4 pages. | arXiv
[4] Chems-Eddin, M. M.: The rank of the 2-class group of some fields with large degree. Available at , 9 pages. | arXiv | MR
[5] Gras, G.: Sur les $\ell$-classes d'idéaux dans les extensions cycliques relatives de degré premier $\ell$. I. Ann. Inst. Fourier 23 (1973), 1-48 French. | DOI | MR | JFM
[6] Gras, G.: Class Field Theory: From Theory to Practice. Springer Monographs in Mathematics. Springer, Berlin (2003). | DOI | MR | JFM
[7] Greenberg, R.: On the Iwasawa invariants of totally real number fields. Am. J. Math. 98 (1976), 263-284. | DOI | MR | JFM
[8] Ishida, M.: The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics 555. Springer, Berlin (1976). | DOI | MR | JFM
[9] Kida, Y.: Cyclotomic $Z_2$-extensions of $J$-fields. J. Number Theory 14 (1982), 340-352. | DOI | MR | JFM
[10] Lemmermeyer, F.: Reciprocity Laws: From Euler to Eisenstein. Springer Monographs in Mathematics. Springer, Berlin (2000). | DOI | MR | JFM
[11] Müller, K.: Capitulation in the cyclotomic $Z_2$ extension of CM number fields. Math. Proc. Camb. Philos. Soc. 166 (2019), 371-380. | DOI | MR | JFM
[12] Washington, L. C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics 83. Springer, New York (1997). | DOI | MR | JFM
Cité par Sources :