On the structure of the 2-Iwasawa module of some number fields of degree 16
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1145-1156
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $K$ be an imaginary cyclic quartic number field whose 2-class group is of type $(2, 2, 2)$, i.e., isomorphic to $\mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}$. The aim of this paper is to determine the structure of the Iwasawa module of the genus field $K^{(*)}$ of $K$.
Let $K$ be an imaginary cyclic quartic number field whose 2-class group is of type $(2, 2, 2)$, i.e., isomorphic to $\mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}$. The aim of this paper is to determine the structure of the Iwasawa module of the genus field $K^{(*)}$ of $K$.
DOI : 10.21136/CMJ.2022.0398-21
Classification : 11R16, 11R18, 11R20, 11R23, 11R29
Keywords: cyclic quartic field; cyclotomic $\mathbb Z_2$-extension; 2-Iwasawa module; 2-class group; 2-rank
@article{10_21136_CMJ_2022_0398_21,
     author = {Jerrari, Idriss and Azizi, Abdelmalek},
     title = {On the structure of the {2-Iwasawa} module of some number fields of degree 16},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1145--1156},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0398-21},
     mrnumber = {4517602},
     zbl = {07655789},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0398-21/}
}
TY  - JOUR
AU  - Jerrari, Idriss
AU  - Azizi, Abdelmalek
TI  - On the structure of the 2-Iwasawa module of some number fields of degree 16
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1145
EP  - 1156
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0398-21/
DO  - 10.21136/CMJ.2022.0398-21
LA  - en
ID  - 10_21136_CMJ_2022_0398_21
ER  - 
%0 Journal Article
%A Jerrari, Idriss
%A Azizi, Abdelmalek
%T On the structure of the 2-Iwasawa module of some number fields of degree 16
%J Czechoslovak Mathematical Journal
%D 2022
%P 1145-1156
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0398-21/
%R 10.21136/CMJ.2022.0398-21
%G en
%F 10_21136_CMJ_2022_0398_21
Jerrari, Idriss; Azizi, Abdelmalek. On the structure of the 2-Iwasawa module of some number fields of degree 16. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1145-1156. doi: 10.21136/CMJ.2022.0398-21

[1] Azizi, A., Jerrari, I., Zekhnini, A., Talbi, M.: On the second 2-class group $ Gal(K_2^{(2)}/K)$ of some imaginary quartic cyclic number field $K$. J. Number Theory 177 (2017), 562-588. | DOI | MR | JFM

[2] Brown, E., Parry, C. J.: The 2-class group of certain biquadratic number fields. J. Reine Angew. Math. 295 (1977), 61-71. | DOI | MR | JFM

[3] Chems-Eddin, M. M.: The 2-Iwasawa module over certain octic elementary fields. Available at , 4 pages. | arXiv

[4] Chems-Eddin, M. M.: The rank of the 2-class group of some fields with large degree. Available at , 9 pages. | arXiv | MR

[5] Gras, G.: Sur les $\ell$-classes d'idéaux dans les extensions cycliques relatives de degré premier $\ell$. I. Ann. Inst. Fourier 23 (1973), 1-48 French. | DOI | MR | JFM

[6] Gras, G.: Class Field Theory: From Theory to Practice. Springer Monographs in Mathematics. Springer, Berlin (2003). | DOI | MR | JFM

[7] Greenberg, R.: On the Iwasawa invariants of totally real number fields. Am. J. Math. 98 (1976), 263-284. | DOI | MR | JFM

[8] Ishida, M.: The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics 555. Springer, Berlin (1976). | DOI | MR | JFM

[9] Kida, Y.: Cyclotomic $Z_2$-extensions of $J$-fields. J. Number Theory 14 (1982), 340-352. | DOI | MR | JFM

[10] Lemmermeyer, F.: Reciprocity Laws: From Euler to Eisenstein. Springer Monographs in Mathematics. Springer, Berlin (2000). | DOI | MR | JFM

[11] Müller, K.: Capitulation in the cyclotomic $Z_2$ extension of CM number fields. Math. Proc. Camb. Philos. Soc. 166 (2019), 371-380. | DOI | MR | JFM

[12] Washington, L. C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics 83. Springer, New York (1997). | DOI | MR | JFM

Cité par Sources :