The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1121-1131 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A version of the John-Nirenberg inequality suitable for the functions $b\in {\rm BMO}$ with $b^{-}\in L^{\infty }$ is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.
A version of the John-Nirenberg inequality suitable for the functions $b\in {\rm BMO}$ with $b^{-}\in L^{\infty }$ is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.
DOI : 10.21136/CMJ.2022.0362-21
Classification : 42B25, 42B35
Keywords: bounded mean oscillation; commutator; Hardy-Littlewood maximal operator, John-Nirenberg inequality
@article{10_21136_CMJ_2022_0362_21,
     author = {Hu, Min and Wang, Dinghuai},
     title = {The {John-Nirenberg} inequality for functions of bounded mean oscillation  with bounded negative part},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1121--1131},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0362-21},
     mrnumber = {4517600},
     zbl = {07655787},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0362-21/}
}
TY  - JOUR
AU  - Hu, Min
AU  - Wang, Dinghuai
TI  - The John-Nirenberg inequality for functions of bounded mean oscillation  with bounded negative part
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1121
EP  - 1131
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0362-21/
DO  - 10.21136/CMJ.2022.0362-21
LA  - en
ID  - 10_21136_CMJ_2022_0362_21
ER  - 
%0 Journal Article
%A Hu, Min
%A Wang, Dinghuai
%T The John-Nirenberg inequality for functions of bounded mean oscillation  with bounded negative part
%J Czechoslovak Mathematical Journal
%D 2022
%P 1121-1131
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0362-21/
%R 10.21136/CMJ.2022.0362-21
%G en
%F 10_21136_CMJ_2022_0362_21
Hu, Min; Wang, Dinghuai. The John-Nirenberg inequality for functions of bounded mean oscillation  with bounded negative part. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1121-1131. doi: 10.21136/CMJ.2022.0362-21

[1] Bastero, J., Milman, M., Ruiz, F. J.: Commutators for the maximal and sharp functions. Proc. Am. Math. Soc. 128 (2000), 3329-3334. | DOI | MR | JFM

[2] Bennett, C., DeVore, R. A., Sharpley, R.: Weak-$L^\infty$ and BMO. Ann. Math. (2) 113 (1981), 601-611. | DOI | MR | JFM

[3] Bloom, S.: A commutator theorem and weighted BMO. Trans. Am. Math. Soc. 292 (1985), 103-122. | DOI | MR | JFM

[4] Chanillo, S.: A note on commutators. Indiana Univ. Math. J. 31 (1982), 7-16. | DOI | MR | JFM

[5] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. (2) 103 (1976), 611-635. | DOI | MR | JFM

[6] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116. North-Holland, Amsterdam (1985). | DOI | MR | JFM

[7] Ho, K.-P.: Characterizations of BMO by $A_p$ weights and $p$-convexity. Hiroshima Math. J. 41 (2011), 153-165. | DOI | MR | JFM

[8] Izuki, M., Noi, T., Sawano, Y.: The John-Nirenberg inequality in ball Banach function spaces and application to characterization of BMO. J. Inequal. Appl. 2019 (2019), Article ID 268, 11 pages. | DOI | MR | JFM

[9] Janson, S.: Mean oscillation and commutators of singular integral operators. Ark. Math. 16 (1978), 263-270. | DOI | MR | JFM

[10] John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14 (1961), 415-426. | DOI | MR | JFM

[11] Martínez, Á. D., Spector, D.: An improvement to the John-Nirenberg inequality for functions in critical Sobolev spaces. Adv. Nonlinear Anal. 10 (2021), 877-894. | DOI | MR | JFM

[12] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972), 207-226. | DOI | MR | JFM

[13] Muckenhoupt, B., Wheeden, R. L.: Weighted bounded mean oscillation and the Hilbert transform. Stud. Math. 54 (1976), 221-237. | DOI | MR | JFM

[14] Uchiyama, A.: On the compactness of operators of Hankel type. Tohoku Math. J., II. Ser. 30 (1978), 163-171. | DOI | MR | JFM

[15] Wang, D.: Notes on commutator on the variable exponent Lebesgue spaces. Czech. Math. J. 69 (2019), 1029-1037. | DOI | MR | JFM

[16] Wang, D., Zhou, J., Teng, Z.: Some characterizations of BLO space. Math. Nachr. 291 (2018), 1908-1918. | DOI | MR | JFM

[17] Wang, D., Zhou, J., Teng, Z.: Characterizations of BMO and Lipschitz spaces in terms of $A_{p,q}$ weights and their applications. J. Aust. Math. Soc. 107 (2019), 381-391. | DOI | MR | JFM

[18] Zhang, P.: Multiple weighted estimates for commutators of multilinear maximal function. Acta Math. Sin., Engl. Ser. 31 (2015), 973-994. | DOI | MR | JFM

Cité par Sources :