Keywords: bounded mean oscillation; commutator; Hardy-Littlewood maximal operator, John-Nirenberg inequality
@article{10_21136_CMJ_2022_0362_21,
author = {Hu, Min and Wang, Dinghuai},
title = {The {John-Nirenberg} inequality for functions of bounded mean oscillation with bounded negative part},
journal = {Czechoslovak Mathematical Journal},
pages = {1121--1131},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0362-21},
mrnumber = {4517600},
zbl = {07655787},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0362-21/}
}
TY - JOUR AU - Hu, Min AU - Wang, Dinghuai TI - The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1121 EP - 1131 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0362-21/ DO - 10.21136/CMJ.2022.0362-21 LA - en ID - 10_21136_CMJ_2022_0362_21 ER -
%0 Journal Article %A Hu, Min %A Wang, Dinghuai %T The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part %J Czechoslovak Mathematical Journal %D 2022 %P 1121-1131 %V 72 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0362-21/ %R 10.21136/CMJ.2022.0362-21 %G en %F 10_21136_CMJ_2022_0362_21
Hu, Min; Wang, Dinghuai. The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1121-1131. doi: 10.21136/CMJ.2022.0362-21
[1] Bastero, J., Milman, M., Ruiz, F. J.: Commutators for the maximal and sharp functions. Proc. Am. Math. Soc. 128 (2000), 3329-3334. | DOI | MR | JFM
[2] Bennett, C., DeVore, R. A., Sharpley, R.: Weak-$L^\infty$ and BMO. Ann. Math. (2) 113 (1981), 601-611. | DOI | MR | JFM
[3] Bloom, S.: A commutator theorem and weighted BMO. Trans. Am. Math. Soc. 292 (1985), 103-122. | DOI | MR | JFM
[4] Chanillo, S.: A note on commutators. Indiana Univ. Math. J. 31 (1982), 7-16. | DOI | MR | JFM
[5] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. (2) 103 (1976), 611-635. | DOI | MR | JFM
[6] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116. North-Holland, Amsterdam (1985). | DOI | MR | JFM
[7] Ho, K.-P.: Characterizations of BMO by $A_p$ weights and $p$-convexity. Hiroshima Math. J. 41 (2011), 153-165. | DOI | MR | JFM
[8] Izuki, M., Noi, T., Sawano, Y.: The John-Nirenberg inequality in ball Banach function spaces and application to characterization of BMO. J. Inequal. Appl. 2019 (2019), Article ID 268, 11 pages. | DOI | MR | JFM
[9] Janson, S.: Mean oscillation and commutators of singular integral operators. Ark. Math. 16 (1978), 263-270. | DOI | MR | JFM
[10] John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14 (1961), 415-426. | DOI | MR | JFM
[11] Martínez, Á. D., Spector, D.: An improvement to the John-Nirenberg inequality for functions in critical Sobolev spaces. Adv. Nonlinear Anal. 10 (2021), 877-894. | DOI | MR | JFM
[12] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972), 207-226. | DOI | MR | JFM
[13] Muckenhoupt, B., Wheeden, R. L.: Weighted bounded mean oscillation and the Hilbert transform. Stud. Math. 54 (1976), 221-237. | DOI | MR | JFM
[14] Uchiyama, A.: On the compactness of operators of Hankel type. Tohoku Math. J., II. Ser. 30 (1978), 163-171. | DOI | MR | JFM
[15] Wang, D.: Notes on commutator on the variable exponent Lebesgue spaces. Czech. Math. J. 69 (2019), 1029-1037. | DOI | MR | JFM
[16] Wang, D., Zhou, J., Teng, Z.: Some characterizations of BLO space. Math. Nachr. 291 (2018), 1908-1918. | DOI | MR | JFM
[17] Wang, D., Zhou, J., Teng, Z.: Characterizations of BMO and Lipschitz spaces in terms of $A_{p,q}$ weights and their applications. J. Aust. Math. Soc. 107 (2019), 381-391. | DOI | MR | JFM
[18] Zhang, P.: Multiple weighted estimates for commutators of multilinear maximal function. Acta Math. Sin., Engl. Ser. 31 (2015), 973-994. | DOI | MR | JFM
Cité par Sources :