On ternary quadratic forms over the rational numbers
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1105-1119
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a ternary quadratic form over the rational numbers, we characterize the set of rational numbers represented by that form over the rational numbers. Consequently, we reprove the classical fact that any positive definite integral ternary quadratic form must fail to represent infinitely many positive integers over the rational numbers. Our proof uses only the quadratic reciprocity law and the Hasse-Minkowski theorem, and is elementary.
For a ternary quadratic form over the rational numbers, we characterize the set of rational numbers represented by that form over the rational numbers. Consequently, we reprove the classical fact that any positive definite integral ternary quadratic form must fail to represent infinitely many positive integers over the rational numbers. Our proof uses only the quadratic reciprocity law and the Hasse-Minkowski theorem, and is elementary.
DOI : 10.21136/CMJ.2022.0359-21
Classification : 11A15, 11D09
Keywords: ternary quadratic forms; Gauss reciprocity law; Hasse-Minkowski theorem
@article{10_21136_CMJ_2022_0359_21,
     author = {Jafari, Amir and Rostamkhani, Farhood},
     title = {On ternary quadratic forms over the rational numbers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1105--1119},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0359-21},
     mrnumber = {4517599},
     zbl = {07655786},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0359-21/}
}
TY  - JOUR
AU  - Jafari, Amir
AU  - Rostamkhani, Farhood
TI  - On ternary quadratic forms over the rational numbers
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1105
EP  - 1119
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0359-21/
DO  - 10.21136/CMJ.2022.0359-21
LA  - en
ID  - 10_21136_CMJ_2022_0359_21
ER  - 
%0 Journal Article
%A Jafari, Amir
%A Rostamkhani, Farhood
%T On ternary quadratic forms over the rational numbers
%J Czechoslovak Mathematical Journal
%D 2022
%P 1105-1119
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0359-21/
%R 10.21136/CMJ.2022.0359-21
%G en
%F 10_21136_CMJ_2022_0359_21
Jafari, Amir; Rostamkhani, Farhood. On ternary quadratic forms over the rational numbers. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1105-1119. doi: 10.21136/CMJ.2022.0359-21

[1] Albert, A. A.: The integers represented by sets of ternary quadratic forms. Am. J. Math. 55 (1933), 274-292. | DOI | MR | JFM

[2] Conway, J. H.: The Sensual (Quadratic) Form. The Carus Mathematical Monographs 26. Mathematical Association of America, Washington (1997). | DOI | MR | JFM

[3] Cox, D. A.: Primes of the Form $x^2+ny^2$: Fermat, Class Field Theory, and Complex Multiplication. Pure and Applied Mathematics. A Wiley Series of Texts, Monographs, and Tracts. John Wiley & Sons, Hoboken (2013). | DOI | MR | JFM

[4] Dickson, L. E.: Integers represented by positive ternary quadratic forms. Bull. Am. Math. Soc. 33 (1927), 63-70 \99999JFM99999 53.0133.04. | DOI | MR

[5] Doyle, G., Williams, K. S.: A positive-definite ternary quadratic form does not represent all positive integers. Integers 17 (2017), Article ID A.41, 19 pages. | MR | JFM

[6] Duke, W., Schulze-Pillot, R.: Representations of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math. 99 (1990), 49-57. | DOI | MR | JFM

[7] Flath, D. E.: Introduction to Number Theory. AMS, Providence (2018). | DOI | MR | JFM

[8] Gupta, H.: Some idiosyncratic numbers of Ramanujan. Proc. Indian Acad. Sci., Sect. A 13 (1941), 519-520. | DOI | MR | JFM

[9] Jones, B. W., Pall, G.: Regular and semi-regular positive ternary quadratic forms. Acta Math. 70 (1939), 165-191. | DOI | MR | JFM

[10] Kaplansky, I.: Ternary positive quadratic forms that represent all odd positive integers. Acta Arith. 70 (1995), 209-214. | DOI | MR | JFM

[11] Kaplansky, I.: Linear Algebra and Geometry: A Second Course. Dover Publications, Mineola (2003). | MR | JFM

[12] Lebesgue, V. A.: Tout nombre impair est la somme de quatre carrés dont deux sont égaux. J. Math. Pures Appl. (2) 2 (1857), 149-152 French.

[13] Legendre, A. M.: Essai sur la théorie des nombres. Duprat, Paris (1798), French. | MR | JFM

[14] Mordell, L. J.: The condition for integer solutions of $ax^2 +by^2 +cz^2 +dt^2 = 0$. J. Reine Angew. Math. 164 (1931), 40-49. | DOI | MR | JFM

[15] Mordell, L. J.: Note on the diophantine equation $ax^2 +by^2 +cz^2 +dt^2 = 0$. Bull. Am. Math. Soc. 38 (1932), 277-282. | DOI | MR | JFM

[16] Ono, K., Soundararajan, K.: Ramanujan's ternary quadratic form. Invent. Math. 130 (1997), 415-454. | DOI | MR | JFM

[17] Ramanujan, S.: On the expression of a number in the form $ax^2 + by^2 + cz^2 + du^2$. Proc. Camb. Philos. Soc. 19 (1917), 11-21 \99999JFM99999 46.0240.01.

[18] Serre, J.-P.: A Course in Arithmetic. Graduate Texts in Mathematics 7. Springer, New York (1973). | DOI | MR | JFM

[19] Sun, Z.-W.: On universal sums of polygonal numbers. Sci. China, Math. 58 (2015), 1367-1396. | DOI | MR | JFM

[20] Wu, H.-L., Sun, Z.-W.: Arithmetic progressions represented by diagonal ternary quadratic forms. Available at , 16 pages. | arXiv

Cité par Sources :