Keywords: ternary quadratic forms; Gauss reciprocity law; Hasse-Minkowski theorem
@article{10_21136_CMJ_2022_0359_21,
author = {Jafari, Amir and Rostamkhani, Farhood},
title = {On ternary quadratic forms over the rational numbers},
journal = {Czechoslovak Mathematical Journal},
pages = {1105--1119},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0359-21},
mrnumber = {4517599},
zbl = {07655786},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0359-21/}
}
TY - JOUR AU - Jafari, Amir AU - Rostamkhani, Farhood TI - On ternary quadratic forms over the rational numbers JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1105 EP - 1119 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0359-21/ DO - 10.21136/CMJ.2022.0359-21 LA - en ID - 10_21136_CMJ_2022_0359_21 ER -
%0 Journal Article %A Jafari, Amir %A Rostamkhani, Farhood %T On ternary quadratic forms over the rational numbers %J Czechoslovak Mathematical Journal %D 2022 %P 1105-1119 %V 72 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0359-21/ %R 10.21136/CMJ.2022.0359-21 %G en %F 10_21136_CMJ_2022_0359_21
Jafari, Amir; Rostamkhani, Farhood. On ternary quadratic forms over the rational numbers. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1105-1119. doi: 10.21136/CMJ.2022.0359-21
[1] Albert, A. A.: The integers represented by sets of ternary quadratic forms. Am. J. Math. 55 (1933), 274-292. | DOI | MR | JFM
[2] Conway, J. H.: The Sensual (Quadratic) Form. The Carus Mathematical Monographs 26. Mathematical Association of America, Washington (1997). | DOI | MR | JFM
[3] Cox, D. A.: Primes of the Form $x^2+ny^2$: Fermat, Class Field Theory, and Complex Multiplication. Pure and Applied Mathematics. A Wiley Series of Texts, Monographs, and Tracts. John Wiley & Sons, Hoboken (2013). | DOI | MR | JFM
[4] Dickson, L. E.: Integers represented by positive ternary quadratic forms. Bull. Am. Math. Soc. 33 (1927), 63-70 \99999JFM99999 53.0133.04. | DOI | MR
[5] Doyle, G., Williams, K. S.: A positive-definite ternary quadratic form does not represent all positive integers. Integers 17 (2017), Article ID A.41, 19 pages. | MR | JFM
[6] Duke, W., Schulze-Pillot, R.: Representations of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math. 99 (1990), 49-57. | DOI | MR | JFM
[7] Flath, D. E.: Introduction to Number Theory. AMS, Providence (2018). | DOI | MR | JFM
[8] Gupta, H.: Some idiosyncratic numbers of Ramanujan. Proc. Indian Acad. Sci., Sect. A 13 (1941), 519-520. | DOI | MR | JFM
[9] Jones, B. W., Pall, G.: Regular and semi-regular positive ternary quadratic forms. Acta Math. 70 (1939), 165-191. | DOI | MR | JFM
[10] Kaplansky, I.: Ternary positive quadratic forms that represent all odd positive integers. Acta Arith. 70 (1995), 209-214. | DOI | MR | JFM
[11] Kaplansky, I.: Linear Algebra and Geometry: A Second Course. Dover Publications, Mineola (2003). | MR | JFM
[12] Lebesgue, V. A.: Tout nombre impair est la somme de quatre carrés dont deux sont égaux. J. Math. Pures Appl. (2) 2 (1857), 149-152 French.
[13] Legendre, A. M.: Essai sur la théorie des nombres. Duprat, Paris (1798), French. | MR | JFM
[14] Mordell, L. J.: The condition for integer solutions of $ax^2 +by^2 +cz^2 +dt^2 = 0$. J. Reine Angew. Math. 164 (1931), 40-49. | DOI | MR | JFM
[15] Mordell, L. J.: Note on the diophantine equation $ax^2 +by^2 +cz^2 +dt^2 = 0$. Bull. Am. Math. Soc. 38 (1932), 277-282. | DOI | MR | JFM
[16] Ono, K., Soundararajan, K.: Ramanujan's ternary quadratic form. Invent. Math. 130 (1997), 415-454. | DOI | MR | JFM
[17] Ramanujan, S.: On the expression of a number in the form $ax^2 + by^2 + cz^2 + du^2$. Proc. Camb. Philos. Soc. 19 (1917), 11-21 \99999JFM99999 46.0240.01.
[18] Serre, J.-P.: A Course in Arithmetic. Graduate Texts in Mathematics 7. Springer, New York (1973). | DOI | MR | JFM
[19] Sun, Z.-W.: On universal sums of polygonal numbers. Sci. China, Math. 58 (2015), 1367-1396. | DOI | MR | JFM
[20] Wu, H.-L., Sun, Z.-W.: Arithmetic progressions represented by diagonal ternary quadratic forms. Available at , 16 pages. | arXiv
Cité par Sources :