On the higher power moments of cusp form coefficients over sums of two squares
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1089-1104
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $f$ be a normalized primitive holomorphic cusp form of even integral weight for the full modular group $\Gamma ={\rm SL} (2,\mathbb {Z})$. Denote by $\lambda _{f}(n)$ the $n$th normalized Fourier coefficient of $f$. We are interested in the average behaviour of the sum $$ \sum _{a^{2} + b^{2}\leq x} \lambda _{f}^{j}(a^{2}+b^{2}) $$ for $x\geq 1$, where $a,b\in \mathbb {Z}$ and $j\geq 9$ is any fixed positive integer. In a similar manner, we also establish analogous results for the normalized coefficients of Dirichlet expansions of associated symmetric power $L$-functions and Rankin-Selberg $L$-functions.
Let $f$ be a normalized primitive holomorphic cusp form of even integral weight for the full modular group $\Gamma ={\rm SL} (2,\mathbb {Z})$. Denote by $\lambda _{f}(n)$ the $n$th normalized Fourier coefficient of $f$. We are interested in the average behaviour of the sum $$ \sum _{a^{2} + b^{2}\leq x} \lambda _{f}^{j}(a^{2}+b^{2}) $$ for $x\geq 1$, where $a,b\in \mathbb {Z}$ and $j\geq 9$ is any fixed positive integer. In a similar manner, we also establish analogous results for the normalized coefficients of Dirichlet expansions of associated symmetric power $L$-functions and Rankin-Selberg $L$-functions.
DOI : 10.21136/CMJ.2022.0358-21
Classification : 11F11, 11F30, 11F66
Keywords: Fourier coefficient; automorphic $L$-function, Langlands program
@article{10_21136_CMJ_2022_0358_21,
     author = {Hua, Guodong},
     title = {On the higher power moments of cusp form coefficients over sums of two squares},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1089--1104},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0358-21},
     mrnumber = {4517598},
     zbl = {07655785},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0358-21/}
}
TY  - JOUR
AU  - Hua, Guodong
TI  - On the higher power moments of cusp form coefficients over sums of two squares
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1089
EP  - 1104
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0358-21/
DO  - 10.21136/CMJ.2022.0358-21
LA  - en
ID  - 10_21136_CMJ_2022_0358_21
ER  - 
%0 Journal Article
%A Hua, Guodong
%T On the higher power moments of cusp form coefficients over sums of two squares
%J Czechoslovak Mathematical Journal
%D 2022
%P 1089-1104
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0358-21/
%R 10.21136/CMJ.2022.0358-21
%G en
%F 10_21136_CMJ_2022_0358_21
Hua, Guodong. On the higher power moments of cusp form coefficients over sums of two squares. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1089-1104. doi: 10.21136/CMJ.2022.0358-21

[1] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. I. Compos. Math. 150 (2014), 729-748. | DOI | MR | JFM

[2] Clozel, L., Thorne, J. A.: Level raising and symmetric power functoriality. II. Ann. Math. (2) 181 (2015), 303-359. | DOI | MR | JFM

[3] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. III. Duke Math. J. 166 (2017), 325-402. | DOI | MR | JFM

[4] Deligne, P.: La conjecture de Weil. I. Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. | DOI | MR | JFM

[5] Fomenko, O. M.: Fourier coefficients of parabolic forms, and automorphic $L$-functions. J. Math. Sci., New York 95 (1999), 2295-2316. | DOI | MR

[6] Fomenko, O. M.: Identities involving the coefficients of automorphic $L$-functions. J. Math. Sci., New York 133 (2006), 1749-1755. | DOI | MR | JFM

[7] Fomenko, O. M.: Mean value theorems for automorphic $L$-functions. St. Petersbg. Math. J. 19 (2008), 853-866. | DOI | MR | JFM

[8] Gelbart, S., Jacquet, H.: A relation between automorphic representations of $GL(2)$ and $GL(3)$. Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. | DOI | MR | JFM

[9] Hafner, J. L., Ivić, A.: On sums of Fourier coefficients of cusp forms. Enseign. Math., II. Sér. 35 (1989), 375-382. | DOI | MR | JFM

[10] He, X.: Integral power sums of Fourier coefficients of symmetric square $L$-functions. Proc. Am. Math. Soc. 147 (2019), 2847-2856. | DOI | MR | JFM

[11] Hecke, E.: Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Semin. Univ. Hamb. 5 (1927), 199-224 German \99999JFM99999 53.0345.02. | DOI | MR

[12] Huang, B.: On the Rankin-Selberg problem. Math. Ann. 381 (2021), 1217-1251. | DOI | MR | JFM

[13] Ivić, A.: On zeta-functions associated with Fourier coefficients of cusp forms. Proceedings of the Amalfi Conference on Analytic Number Theory Universitá di Salerno, Salerno (1992), 231-246. | MR | JFM

[14] Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). | DOI | MR | JFM

[15] Jacquet, H., Piatetski-Shapiro, I. I., Shalika, J. A.: Rankin-Selberg convolutions. Am. J. Math. 105 (1983), 367-464. | DOI | MR | JFM

[16] Jacquet, H., Shalika, J. A.: On Euler products and the classification of automorphic representations. I. Am. J. Math. 103 (1981), 499-558. | DOI | MR | JFM

[17] Jacquet, H., Shalika, J. A.: On Euler products and the classification of automorphic forms. II. Am. J. Math. 103 (1981), 777-815. | DOI | MR | JFM

[18] Jiang, Y., Lü, G.: Uniform estimates for sums of coefficients of symmetric square $L$-function. J. Number Theory 148 (2015), 220-234. | DOI | MR | JFM

[19] Kim, H. H.: Functoriality for the exterior square of $GL_4$ and the symmetric fourth of $GL_2$. J. Am. Math. Soc. 16 (2003), 139-183. | DOI | MR | JFM

[20] Kim, H. H., Shahidi, F.: Cuspidality of symmetric power with applications. Duke Math. J. 112 (2002), 177-197. | DOI | MR | JFM

[21] Kim, H. H., Shahidi, F.: Functorial products for $GL_2\times GL_3$ and the symmetric cube for $GL_2$. Ann. Math. (2) 155 (2002), 837-893. | DOI | MR | JFM

[22] Lao, H., Luo, S.: Sign changes and nonvanishing of Fourier coefficients of holomorphic cusp forms. Rocky Mt. J. Math. 51 (2021), 1701-1714. | DOI | MR | JFM

[23] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. | DOI | MR | JFM

[24] Lau, Y.-K., Lü, G., Wu, J.: Integral power sums of Hecke eigenvalues. Acta Arith. 150 (2011), 193-207. | DOI | MR | JFM

[25] Lü, G.: Average behavior of Fourier coefficients of cusp forms. Proc. Am. Math. Soc. 137 (2009), 1961-1969. | DOI | MR | JFM

[26] Lü, G.: The sixth and eighth moments of Fourier coefficients of cusp forms. J. Number Theory 129 (2009), 2790-2800. | DOI | MR | JFM

[27] Lü, G.: Uniform estimates for sums of Fourier coefficients of cusp forms. Acta Math. Hung. 124 (2009), 83-97. | DOI | MR | JFM

[28] Lü, G.: On higher moments of Fourier coefficients of holomorphic cusp forms. Can. J. Math. 63 (2011), 634-647. | DOI | MR | JFM

[29] Luo, S., Lao, H., Zou, A.: Asymptotics for the Dirichlet coefficients of symmetric power $L$-functions. Acta Arith. 199 (2021), 253-268. | DOI | MR | JFM

[30] Moreno, C. J., Shahidi, F.: The fourth moment of Ramanujan $\tau$-function. Math. Ann. 266 (1983), 233-239. | DOI | MR | JFM

[31] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. | DOI | MR | JFM

[32] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. II. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. | DOI | MR | JFM

[33] Rankin, R. A.: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. II. The order of the Fourier coefficients of the integral modular forms. Proc. Camb. Philos. Soc. 35 (1939), 357-372. | DOI | MR | JFM

[34] Rankin, R. A.: Sums of cusp form coefficients. Automorphic Forms and Analytic Number Theory University Montréal, Montréal (1990), 115-121. | MR | JFM

[35] Rudnick, Z., Sarnak, P.: Zeros of principal $L$-functions and random matrix theory. Duke Math. J. 81 (1996), 269-322. | DOI | MR | JFM

[36] Sankaranarayanan, A.: On a sum involving Fourier coefficients of cusp forms. Lith. Math. J. 46 (2006), 459-474. | DOI | MR | JFM

[37] Sankaranarayanan, A., Singh, S. K., Srinivas, K.: Discrete mean square estimates for coefficients of symmetric power $L$-functions. Acta Arith. 190 (2019), 193-208. | DOI | MR | JFM

[38] Selberg, A.: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. 43 (1940), 47-50 German. | MR | JFM

[39] Shahidi, F.: On certain $L$-functions. Am. J. Math. 103 (1981), 297-355. | DOI | MR | JFM

[40] Shahidi, F.: Fourier transforms of intertwining operators and Plancherel measure for $GL(n)$. Am. J. Math. 106 (1984), 67-111. | DOI | MR | JFM

[41] Shahidi, F.: Local coefficients as Artin factors for real groups. Duke Math. J. 52 (1985), 973-1007. | DOI | MR | JFM

[42] Shahidi, F.: Third symmetric power $L$-functions for $GL(2)$. Compos. Math. 70 (1989), 245-273. | MR | JFM

[43] Shahidi, F.: A proof of Langland's conjecture on Plancherel measures; Complementary series for $p$-adic groups. Ann. Math. (2) 132 (1990), 273-330. | DOI | MR | JFM

[44] Tang, H.: Estimates for the Fourier coefficients of symmetric square $L$-functions. Arch. Math. 100 (2013), 123-130. | DOI | MR | JFM

[45] Tang, H., Wu, J.: Fourier coefficients of symmetric power $L$-functions. J. Number Theory 167 (2016), 147-160. | DOI | MR | JFM

[46] Wu, J.: Power sums of Hecke eigenvalues and application. Acta Arith. 137 (2009), 333-344. | DOI | MR | JFM

[47] Zhai, S.: Average behavior of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 133 (2013), 3862-3876. | DOI | MR | JFM

Cité par Sources :