On the higher power moments of cusp form coefficients over sums of two squares
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1089-1104.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f$ be a normalized primitive holomorphic cusp form of even integral weight for the full modular group $\Gamma ={\rm SL} (2,\mathbb {Z})$. Denote by $\lambda _{f}(n)$ the $n$th normalized Fourier coefficient of $f$. We are interested in the average behaviour of the sum $$ \sum _{a^{2} + b^{2}\leq x} \lambda _{f}^{j}(a^{2}+b^{2}) $$ for $x\geq 1$, where $a,b\in \mathbb {Z}$ and $j\geq 9$ is any fixed positive integer. In a similar manner, we also establish analogous results for the normalized coefficients of Dirichlet expansions of associated symmetric power $L$-functions and Rankin-Selberg $L$-functions.
DOI : 10.21136/CMJ.2022.0358-21
Classification : 11F11, 11F30, 11F66
Keywords: Fourier coefficient; automorphic $L$-function, Langlands program
@article{10_21136_CMJ_2022_0358_21,
     author = {Hua, Guodong},
     title = {On the higher power moments of cusp form coefficients over sums of two squares},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1089--1104},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2022},
     doi = {10.21136/CMJ.2022.0358-21},
     mrnumber = {4517598},
     zbl = {07655785},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0358-21/}
}
TY  - JOUR
AU  - Hua, Guodong
TI  - On the higher power moments of cusp form coefficients over sums of two squares
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1089
EP  - 1104
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0358-21/
DO  - 10.21136/CMJ.2022.0358-21
LA  - en
ID  - 10_21136_CMJ_2022_0358_21
ER  - 
%0 Journal Article
%A Hua, Guodong
%T On the higher power moments of cusp form coefficients over sums of two squares
%J Czechoslovak Mathematical Journal
%D 2022
%P 1089-1104
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0358-21/
%R 10.21136/CMJ.2022.0358-21
%G en
%F 10_21136_CMJ_2022_0358_21
Hua, Guodong. On the higher power moments of cusp form coefficients over sums of two squares. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1089-1104. doi : 10.21136/CMJ.2022.0358-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0358-21/

Cité par Sources :