On sharp characters of type $\{ -1,0,2 \}$
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1081-1087
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a complex character $ \chi $ of a finite group $ G $, it is known that the product $ {\rm sh}(\chi ) = \prod _{ l \in L(\chi )} (\chi (1) - l) $ is a multiple of $ |G| $, where $ L(\chi ) $ is the image of $ \chi $ on $ G-\{1\}$. The character $ \chi $ is said to be a sharp character of type $ L $ if $ L=L(\chi ) $ and $ {\rm sh} (\chi )=|G| $. If the principal character of $G$ is not an irreducible constituent of $\chi $, then the character $\chi $ is called normalized. It is proposed as a problem by P. J. Cameron and M. Kiyota, to find finite groups $G$ with normalized sharp characters of type $\{-1,0,2\}$. Here we prove that such a group with nontrivial center is isomorphic to the dihedral group of order 12.
For a complex character $ \chi $ of a finite group $ G $, it is known that the product $ {\rm sh}(\chi ) = \prod _{ l \in L(\chi )} (\chi (1) - l) $ is a multiple of $ |G| $, where $ L(\chi ) $ is the image of $ \chi $ on $ G-\{1\}$. The character $ \chi $ is said to be a sharp character of type $ L $ if $ L=L(\chi ) $ and $ {\rm sh} (\chi )=|G| $. If the principal character of $G$ is not an irreducible constituent of $\chi $, then the character $\chi $ is called normalized. It is proposed as a problem by P. J. Cameron and M. Kiyota, to find finite groups $G$ with normalized sharp characters of type $\{-1,0,2\}$. Here we prove that such a group with nontrivial center is isomorphic to the dihedral group of order 12.
DOI : 10.21136/CMJ.2022.0356-21
Classification : 20C15
Keywords: sharp character; sharp pair; finite group
@article{10_21136_CMJ_2022_0356_21,
     author = {Abdollahi, Alireza and Bagherian, Javad and Ebrahimi, Mahdi and Khatami, Maryam and Shahbazi, Zahra and Sobhani, Reza},
     title = {On sharp characters of type $\{ -1,0,2 \}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1081--1087},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0356-21},
     mrnumber = {4517597},
     zbl = {07655784},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0356-21/}
}
TY  - JOUR
AU  - Abdollahi, Alireza
AU  - Bagherian, Javad
AU  - Ebrahimi, Mahdi
AU  - Khatami, Maryam
AU  - Shahbazi, Zahra
AU  - Sobhani, Reza
TI  - On sharp characters of type $\{ -1,0,2 \}$
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1081
EP  - 1087
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0356-21/
DO  - 10.21136/CMJ.2022.0356-21
LA  - en
ID  - 10_21136_CMJ_2022_0356_21
ER  - 
%0 Journal Article
%A Abdollahi, Alireza
%A Bagherian, Javad
%A Ebrahimi, Mahdi
%A Khatami, Maryam
%A Shahbazi, Zahra
%A Sobhani, Reza
%T On sharp characters of type $\{ -1,0,2 \}$
%J Czechoslovak Mathematical Journal
%D 2022
%P 1081-1087
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0356-21/
%R 10.21136/CMJ.2022.0356-21
%G en
%F 10_21136_CMJ_2022_0356_21
Abdollahi, Alireza; Bagherian, Javad; Ebrahimi, Mahdi; Khatami, Maryam; Shahbazi, Zahra; Sobhani, Reza. On sharp characters of type $\{ -1,0,2 \}$. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1081-1087. doi: 10.21136/CMJ.2022.0356-21

[1] Adhami, S. R., Iranmanesh, A.: On sharp characters of type $\{ -1,3 \}$ or $\{ -3,1 \}$. J. Algebra Appl. 16 (2017), Article ID 1750004, 10 pages. | DOI | MR | JFM

[2] Alvis, D., Nozawa, S.: Sharp characters with irrational values. J. Math. Soc. Japan 48 (1996), 567-591. | DOI | MR | JFM

[3] Blichfeldt, H. F.: A theorem concerning the invariants of linear homogeneous groups, with some applications to substitution groups. Trans. Am. Math. Soc. 5 (1904), 461-466 \99999JFM99999 35.0161.01. | DOI | MR

[4] Cameron, P. J., Kataoka, T., Kiyota, M.: Sharp characters of finite groups of type $\{ -1, 1 \}$. J. Algebra 152 (1992), 248-258. | DOI | MR | JFM

[5] Cameron, P. J., Kiyota, M.: Sharp characters of finite groups. J. Algebra 115 (1988), 125-143. | DOI | MR | JFM

[6] Group, GAP: GAP - Groups, Algorithms, Programming: A System for Computational Discrete Algebra: Version 4.11.0. Available at https://www.gap-system.org/ (2020).

[7] Isaacs, I. M.: Character Theory of Finite Groups. AMS Chelsea Publishing, Providence (2006). | DOI | MR | JFM

[8] Kiyota, M.: An inequality for finite permutation groups. J. Comb. Theory, Ser. A 27 (1979), 119. | DOI | MR | JFM

[9] Nozawa, S.: Sharp character of finite groups having prescribed values. Tsukuba J. Math. 16 (1992), 269-277. | DOI | MR | JFM

[10] Nozawa, S., Uno, M.: On sharp characters of rank 2 with rational values. J. Algebra 286 (2005), 325-340. | DOI | MR | JFM

[11] Yoguchi, T.: On determining the sharp characters of finite groups. JP J. Algebra Number Theory Appl. 11 (2008), 85-98. | MR | JFM

[12] Yoguchi, T.: On sharp characters of type $\{ \ell, \ell + p \}$. Kyushu J. Math. 65 (2011), 179-195. | DOI | MR | JFM

Cité par Sources :