On supercharacter theoretic generalizations of monomial groups and Artin's conjecture
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1065-1079
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We extend the notions of quasi-monomial groups and almost monomial groups in the framework of supercharacter theories, and we study their connection with Artin's conjecture regarding the holomorphy of Artin $L$-functions.
We extend the notions of quasi-monomial groups and almost monomial groups in the framework of supercharacter theories, and we study their connection with Artin's conjecture regarding the holomorphy of Artin $L$-functions.
DOI : 10.21136/CMJ.2022.0352-21
Classification : 11R42, 20C15
Keywords: Artin $L$-function; monomial group; almost monomial group; supercharacter theory
@article{10_21136_CMJ_2022_0352_21,
     author = {Cimpoea\c{s}, Mircea and Radu, Alexandru},
     title = {On supercharacter theoretic generalizations of monomial groups and {Artin's} conjecture},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1065--1079},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0352-21},
     mrnumber = {4517596},
     zbl = {07655783},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0352-21/}
}
TY  - JOUR
AU  - Cimpoeaş, Mircea
AU  - Radu, Alexandru
TI  - On supercharacter theoretic generalizations of monomial groups and Artin's conjecture
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1065
EP  - 1079
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0352-21/
DO  - 10.21136/CMJ.2022.0352-21
LA  - en
ID  - 10_21136_CMJ_2022_0352_21
ER  - 
%0 Journal Article
%A Cimpoeaş, Mircea
%A Radu, Alexandru
%T On supercharacter theoretic generalizations of monomial groups and Artin's conjecture
%J Czechoslovak Mathematical Journal
%D 2022
%P 1065-1079
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0352-21/
%R 10.21136/CMJ.2022.0352-21
%G en
%F 10_21136_CMJ_2022_0352_21
Cimpoeaş, Mircea; Radu, Alexandru. On supercharacter theoretic generalizations of monomial groups and Artin's conjecture. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1065-1079. doi: 10.21136/CMJ.2022.0352-21

[1] Aramata, H.: Über die Teilbarkeit der Dedekindschen Zetafunktionen. Proc. Imp. Acad. Jap. 9 (1933), 31-34 German. | DOI | MR | JFM

[2] Artin, E.: Über eine neue Art von $L$-Reihen. Abh. Math. Semin. Univ. Hamb. 3 (1924), 89-108 German \99999JFM99999 49.0123.01. | DOI | MR

[3] Artin, E.: Zur Theorie der $L$-Reihen mit allgemeinen Gruppencharakteren. Abh. Math. Semin. Univ. Hamb. 8 (1931), 292-306 German \99999JFM99999 56.0173.02. | DOI | MR

[4] Brauer, R.: On the zeta-functions of algebraic number fields. Am. J. Math. 69 (1947), 243-250. | DOI | MR | JFM

[5] Bruns, W., Gubeladze, J.: Polytopes, Rings and $K$-Theory. Springer Monographs in Mathematics. Springer, New York (2009). | DOI | MR | JFM

[6] Cimpoeaş, M., Nicolae, F.: Independence of Artin $L$-functions. Forum Math. 31 (2019), 529-534. | DOI | MR | JFM

[7] Cimpoeaş, M., Nicolae, F.: Artin $L$-functions to almost monomial Galois groups. Forum Math. 32 (2020), 937-940. | DOI | MR | JFM

[8] Diaconis, P., Isaacs, I. M.: Supercharacters and superclasses for algebra groups. Trans. Am. Math. Soc. 360 (2008), 2359-2392. | DOI | MR | JFM

[9] Group, GAP: GAP - Groups, Algorithms, Programming. Version 4.11.1. Available at https://www.gap-system.org/ (2021).

[10] Hendrickson, A. O. F.: Supercharacter theory constructions corresponding to Schur ring products. Commun. Algebra 40 (2012), 4420-4438. | DOI | MR | JFM

[11] Marberg, E.: A supercharacter analogue for normality. J. Algebra 332 (2011), 334-365. | DOI | MR | JFM

[12] Nicolae, F.: On Artin's $L$-functions. I. J. Reine Angew. Math. 539 (2001), 179-184. | DOI | MR | JFM

[13] Nicolae, F.: On the semigroup of Artin's $L$-functions holomorphic at $s_0$. J. Number Theory 128 (2008), 2861-2864. | DOI | MR | JFM

[14] Nicolae, F.: On holomorphic Artin $L$-functions. Monatsh. Math. 186 (2018), 679-683. | DOI | MR | JFM

[15] Taketa, K.: Über die Gruppen, deren Darstellungen sich sämtlich auf monomiale Gestalt transformieren lassen. Proc. Imp. Acad. Japan 6 (1930), 31-33 German \99999JFM99999 56.0133.03. | DOI | MR

[16] Wong, P.-J.: Supercharacters and the Chebotarev density theorem. Acta Arith. 185 (2018), 281-295. | DOI | MR | JFM

Cité par Sources :