Keywords: Artin $L$-function; monomial group; almost monomial group; supercharacter theory
@article{10_21136_CMJ_2022_0352_21,
author = {Cimpoea\c{s}, Mircea and Radu, Alexandru},
title = {On supercharacter theoretic generalizations of monomial groups and {Artin's} conjecture},
journal = {Czechoslovak Mathematical Journal},
pages = {1065--1079},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0352-21},
mrnumber = {4517596},
zbl = {07655783},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0352-21/}
}
TY - JOUR AU - Cimpoeaş, Mircea AU - Radu, Alexandru TI - On supercharacter theoretic generalizations of monomial groups and Artin's conjecture JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1065 EP - 1079 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0352-21/ DO - 10.21136/CMJ.2022.0352-21 LA - en ID - 10_21136_CMJ_2022_0352_21 ER -
%0 Journal Article %A Cimpoeaş, Mircea %A Radu, Alexandru %T On supercharacter theoretic generalizations of monomial groups and Artin's conjecture %J Czechoslovak Mathematical Journal %D 2022 %P 1065-1079 %V 72 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0352-21/ %R 10.21136/CMJ.2022.0352-21 %G en %F 10_21136_CMJ_2022_0352_21
Cimpoeaş, Mircea; Radu, Alexandru. On supercharacter theoretic generalizations of monomial groups and Artin's conjecture. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1065-1079. doi: 10.21136/CMJ.2022.0352-21
[1] Aramata, H.: Über die Teilbarkeit der Dedekindschen Zetafunktionen. Proc. Imp. Acad. Jap. 9 (1933), 31-34 German. | DOI | MR | JFM
[2] Artin, E.: Über eine neue Art von $L$-Reihen. Abh. Math. Semin. Univ. Hamb. 3 (1924), 89-108 German \99999JFM99999 49.0123.01. | DOI | MR
[3] Artin, E.: Zur Theorie der $L$-Reihen mit allgemeinen Gruppencharakteren. Abh. Math. Semin. Univ. Hamb. 8 (1931), 292-306 German \99999JFM99999 56.0173.02. | DOI | MR
[4] Brauer, R.: On the zeta-functions of algebraic number fields. Am. J. Math. 69 (1947), 243-250. | DOI | MR | JFM
[5] Bruns, W., Gubeladze, J.: Polytopes, Rings and $K$-Theory. Springer Monographs in Mathematics. Springer, New York (2009). | DOI | MR | JFM
[6] Cimpoeaş, M., Nicolae, F.: Independence of Artin $L$-functions. Forum Math. 31 (2019), 529-534. | DOI | MR | JFM
[7] Cimpoeaş, M., Nicolae, F.: Artin $L$-functions to almost monomial Galois groups. Forum Math. 32 (2020), 937-940. | DOI | MR | JFM
[8] Diaconis, P., Isaacs, I. M.: Supercharacters and superclasses for algebra groups. Trans. Am. Math. Soc. 360 (2008), 2359-2392. | DOI | MR | JFM
[9] Group, GAP: GAP - Groups, Algorithms, Programming. Version 4.11.1. Available at https://www.gap-system.org/ (2021).
[10] Hendrickson, A. O. F.: Supercharacter theory constructions corresponding to Schur ring products. Commun. Algebra 40 (2012), 4420-4438. | DOI | MR | JFM
[11] Marberg, E.: A supercharacter analogue for normality. J. Algebra 332 (2011), 334-365. | DOI | MR | JFM
[12] Nicolae, F.: On Artin's $L$-functions. I. J. Reine Angew. Math. 539 (2001), 179-184. | DOI | MR | JFM
[13] Nicolae, F.: On the semigroup of Artin's $L$-functions holomorphic at $s_0$. J. Number Theory 128 (2008), 2861-2864. | DOI | MR | JFM
[14] Nicolae, F.: On holomorphic Artin $L$-functions. Monatsh. Math. 186 (2018), 679-683. | DOI | MR | JFM
[15] Taketa, K.: Über die Gruppen, deren Darstellungen sich sämtlich auf monomiale Gestalt transformieren lassen. Proc. Imp. Acad. Japan 6 (1930), 31-33 German \99999JFM99999 56.0133.03. | DOI | MR
[16] Wong, P.-J.: Supercharacters and the Chebotarev density theorem. Acta Arith. 185 (2018), 281-295. | DOI | MR | JFM
Cité par Sources :