On higher moments of Hecke eigenvalues attached to cusp forms
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1055-1064
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $f$, $g$ and $h$ be three distinct primitive holomorphic cusp forms of even integral weights $k_{1}$, $k_{2}$ and $k_{3}$ for the full modular group $\Gamma ={\rm SL}(2,\mathbb {Z})$, respectively, and let $\lambda _{f}(n)$, $\lambda _{g}(n)$ and $\lambda _{h}(n)$ denote the $n$th normalized Fourier coefficients of $f$, $g$ and $h$, respectively. We consider the cancellations of sums related to arithmetic functions $\lambda _{g}(n)$, $\lambda _{h}(n)$ twisted by $\lambda _{f}(n)$ and establish the following results: $$ \sum _{n\leq x}\lambda _{f}(n)\lambda _{g}(n)^{i}\lambda _{h}(n)^{j} \ll _{f,g,h,\varepsilon } x^{1- 1/2^{i+j} +\varepsilon } $$ for any $\varepsilon >0$, where $1\leq i\leq 2$, $j\geq 5$ are any fixed positive integers.
DOI :
10.21136/CMJ.2022.0330-21
Classification :
11F11, 11F30, 11F66
Keywords: Hecke eigenform; Fourier coefficient; Rankin-Selberg $L$-function
Keywords: Hecke eigenform; Fourier coefficient; Rankin-Selberg $L$-function
@article{10_21136_CMJ_2022_0330_21,
author = {Hua, Guodong},
title = {On higher moments of {Hecke} eigenvalues attached to cusp forms},
journal = {Czechoslovak Mathematical Journal},
pages = {1055--1064},
publisher = {mathdoc},
volume = {72},
number = {4},
year = {2022},
doi = {10.21136/CMJ.2022.0330-21},
mrnumber = {4517595},
zbl = {07655782},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0330-21/}
}
TY - JOUR AU - Hua, Guodong TI - On higher moments of Hecke eigenvalues attached to cusp forms JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1055 EP - 1064 VL - 72 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0330-21/ DO - 10.21136/CMJ.2022.0330-21 LA - en ID - 10_21136_CMJ_2022_0330_21 ER -
%0 Journal Article %A Hua, Guodong %T On higher moments of Hecke eigenvalues attached to cusp forms %J Czechoslovak Mathematical Journal %D 2022 %P 1055-1064 %V 72 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0330-21/ %R 10.21136/CMJ.2022.0330-21 %G en %F 10_21136_CMJ_2022_0330_21
Hua, Guodong. On higher moments of Hecke eigenvalues attached to cusp forms. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1055-1064. doi: 10.21136/CMJ.2022.0330-21
Cité par Sources :