On higher moments of Hecke eigenvalues attached to cusp forms
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1055-1064.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f$, $g$ and $h$ be three distinct primitive holomorphic cusp forms of even integral weights $k_{1}$, $k_{2}$ and $k_{3}$ for the full modular group $\Gamma ={\rm SL}(2,\mathbb {Z})$, respectively, and let $\lambda _{f}(n)$, $\lambda _{g}(n)$ and $\lambda _{h}(n)$ denote the $n$th normalized Fourier coefficients of $f$, $g$ and $h$, respectively. We consider the cancellations of sums related to arithmetic functions $\lambda _{g}(n)$, $\lambda _{h}(n)$ twisted by $\lambda _{f}(n)$ and establish the following results: $$ \sum _{n\leq x}\lambda _{f}(n)\lambda _{g}(n)^{i}\lambda _{h}(n)^{j} \ll _{f,g,h,\varepsilon } x^{1- 1/2^{i+j} +\varepsilon } $$ for any $\varepsilon >0$, where $1\leq i\leq 2$, $j\geq 5$ are any fixed positive integers.
DOI : 10.21136/CMJ.2022.0330-21
Classification : 11F11, 11F30, 11F66
Keywords: Hecke eigenform; Fourier coefficient; Rankin-Selberg $L$-function
@article{10_21136_CMJ_2022_0330_21,
     author = {Hua, Guodong},
     title = {On higher moments of {Hecke} eigenvalues attached to cusp forms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1055--1064},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2022},
     doi = {10.21136/CMJ.2022.0330-21},
     mrnumber = {4517595},
     zbl = {07655782},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0330-21/}
}
TY  - JOUR
AU  - Hua, Guodong
TI  - On higher moments of Hecke eigenvalues attached to cusp forms
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1055
EP  - 1064
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0330-21/
DO  - 10.21136/CMJ.2022.0330-21
LA  - en
ID  - 10_21136_CMJ_2022_0330_21
ER  - 
%0 Journal Article
%A Hua, Guodong
%T On higher moments of Hecke eigenvalues attached to cusp forms
%J Czechoslovak Mathematical Journal
%D 2022
%P 1055-1064
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0330-21/
%R 10.21136/CMJ.2022.0330-21
%G en
%F 10_21136_CMJ_2022_0330_21
Hua, Guodong. On higher moments of Hecke eigenvalues attached to cusp forms. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1055-1064. doi : 10.21136/CMJ.2022.0330-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0330-21/

Cité par Sources :