On higher moments of Hecke eigenvalues attached to cusp forms
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1055-1064
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $f$, $g$ and $h$ be three distinct primitive holomorphic cusp forms of even integral weights $k_{1}$, $k_{2}$ and $k_{3}$ for the full modular group $\Gamma ={\rm SL}(2,\mathbb {Z})$, respectively, and let $\lambda _{f}(n)$, $\lambda _{g}(n)$ and $\lambda _{h}(n)$ denote the $n$th normalized Fourier coefficients of $f$, $g$ and $h$, respectively. We consider the cancellations of sums related to arithmetic functions $\lambda _{g}(n)$, $\lambda _{h}(n)$ twisted by $\lambda _{f}(n)$ and establish the following results: $$ \sum _{n\leq x}\lambda _{f}(n)\lambda _{g}(n)^{i}\lambda _{h}(n)^{j} \ll _{f,g,h,\varepsilon } x^{1- 1/2^{i+j} +\varepsilon } $$ for any $\varepsilon >0$, where $1\leq i\leq 2$, $j\geq 5$ are any fixed positive integers.
Let $f$, $g$ and $h$ be three distinct primitive holomorphic cusp forms of even integral weights $k_{1}$, $k_{2}$ and $k_{3}$ for the full modular group $\Gamma ={\rm SL}(2,\mathbb {Z})$, respectively, and let $\lambda _{f}(n)$, $\lambda _{g}(n)$ and $\lambda _{h}(n)$ denote the $n$th normalized Fourier coefficients of $f$, $g$ and $h$, respectively. We consider the cancellations of sums related to arithmetic functions $\lambda _{g}(n)$, $\lambda _{h}(n)$ twisted by $\lambda _{f}(n)$ and establish the following results: $$ \sum _{n\leq x}\lambda _{f}(n)\lambda _{g}(n)^{i}\lambda _{h}(n)^{j} \ll _{f,g,h,\varepsilon } x^{1- 1/2^{i+j} +\varepsilon } $$ for any $\varepsilon >0$, where $1\leq i\leq 2$, $j\geq 5$ are any fixed positive integers.
DOI : 10.21136/CMJ.2022.0330-21
Classification : 11F11, 11F30, 11F66
Keywords: Hecke eigenform; Fourier coefficient; Rankin-Selberg $L$-function
@article{10_21136_CMJ_2022_0330_21,
     author = {Hua, Guodong},
     title = {On higher moments of {Hecke} eigenvalues attached to cusp forms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1055--1064},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0330-21},
     mrnumber = {4517595},
     zbl = {07655782},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0330-21/}
}
TY  - JOUR
AU  - Hua, Guodong
TI  - On higher moments of Hecke eigenvalues attached to cusp forms
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1055
EP  - 1064
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0330-21/
DO  - 10.21136/CMJ.2022.0330-21
LA  - en
ID  - 10_21136_CMJ_2022_0330_21
ER  - 
%0 Journal Article
%A Hua, Guodong
%T On higher moments of Hecke eigenvalues attached to cusp forms
%J Czechoslovak Mathematical Journal
%D 2022
%P 1055-1064
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0330-21/
%R 10.21136/CMJ.2022.0330-21
%G en
%F 10_21136_CMJ_2022_0330_21
Hua, Guodong. On higher moments of Hecke eigenvalues attached to cusp forms. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1055-1064. doi: 10.21136/CMJ.2022.0330-21

[1] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. I. Compos. Math. 150 (2014), 729-748. | DOI | MR | JFM

[2] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. II. Ann. Math. (2) 181 (2015), 303-359. | DOI | MR | JFM

[3] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. III. Duke Math. J. 166 (2017), 325-402. | DOI | MR | JFM

[4] Deligne, P.: La conjecture de Weil. I. Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. | DOI | MR | JFM

[5] Fomenko, O. M.: Fourier coefficients of cusp forms and automorphic $L$-functions. J. Math. Sci., New York 95 (1999), 2295-2316. | DOI | MR | JFM

[6] Gelbart, S., Jacquet, H.: A relation between automorphic representations of $GL(2)$ and $GL(3)$. Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. | DOI | MR | JFM

[7] Hecke, E.: Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Semin. Univ. Hamb. 5 (1927), 199-224 German \99999JFM99999 53.0345.02. | DOI | MR

[8] Huang, B.: On the Rankin-Selberg problem. Math. Ann. 381 (2021), 1217-1251. | DOI | MR | JFM

[9] Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). | DOI | MR | JFM

[10] Jacquet, H., Piatetski-Shapiro, I. I., Shalika, J. A.: Rankin-Selberg convolutions. I. Am. J. Math. 105 (1983), 367-464. | DOI | MR | JFM

[11] Jacquet, H., Shalika, J. A.: On Euler products and the classification of automorphic representations. I. Am. J. Math. 103 (1981), 499-558. | DOI | MR | JFM

[12] Jacquet, H., Shalika, J. A.: On Euler products and the classification of automorphic forms. II. Am. J. Math. 103 (1981), 777-815. | DOI | MR | JFM

[13] Kim, H. H.: Functoriality for the exterior square of $GL_{4}$ and symmetric fourth of $GL_{2}$. J. Am. Math. Soc. 16 (2003), 139-183. | DOI | MR | JFM

[14] Kim, H. H., Shahidi, F.: Cuspidality of symmetric power with applications. Duke Math. J. 112 (2002), 177-197. | DOI | MR | JFM

[15] Kim, H. H., Shahidi, F.: Functorial products for $GL_{2}\times GL_{3}$ and the symmetric cube for $GL_{2}$. Ann. Math. (2) 155 (2002), 837-893. | DOI | MR | JFM

[16] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. | DOI | MR | JFM

[17] Lü, G.: On higher moments of Fourier coefficients of holomorphic cusp forms. II. Montash. Math. 169 (2013), 409-422. | DOI | MR | JFM

[18] Lü, G., Sankaranarayanan, A.: Higher moments of Fourier coefficients of cusp forms. Can. Math. Bull. 58 (2015), 548-560. | DOI | MR | JFM

[19] Moreno, C. J., Shahidi, F.: The fourth moment of Ramanujan $\tau$-function. Math. Ann. 266 (1983), 233-239. | DOI | MR | JFM

[20] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. | DOI | MR | JFM

[21] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. II. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. | DOI | MR | JFM

[22] Ramakrishnan, D.: Modularity of the Rankin-Selberg $L$-series, and multiplicity one for $SL(2)$. Ann. Math. (2) 152 (2000), 45-111. | DOI | MR | JFM

[23] Ramakrishnan, D., Wang, S.: A cuspidality criterion for the functorial product on $GL(2)\times GL(3)$ with a cohomological application. Int. Math. Res. Not. 27 (2004), 1355-1394. | DOI | MR | JFM

[24] Rankin, R. A.: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. II. The order of the Fourier coefficients of the integral modular forms. Proc. Camb. Philos. Soc. 35 (1939), 357-372. | DOI | MR | JFM

[25] Rankin, R. A.: Sums of cusp form coefficients. Automorphic Forms and Anallytic Number Theory University of Montréal, Montréal (1990), 115-121. | MR | JFM

[26] Rudnick, Z., Sarnak, P.: Zeros of principal $L$-functions and random matrix theory. Duke Math. J. 81 (1996), 269-322. | DOI | MR | JFM

[27] Selberg, A.: Bemerkungen über eine Dirichletsche, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. B 43 (1940), 47-50 German. | MR | JFM

[28] Shahidi, F.: On certain $L$-functions. Am. J. Math. 103 (1981), 297-355. | DOI | MR | JFM

[29] Shahidi, F.: Fourier transforms of intertwining operators and Plancherel measures for $GL(n)$. Am. J. Math. 106 (1984), 67-111. | DOI | MR | JFM

[30] Shahidi, F.: Local coefficients as Artin factors for real groups. Duke Math. J. 52 (1985), 973-1007. | DOI | MR | JFM

[31] Shahidi, F.: Third symmetric power $L$-functions for $GL(2)$. Compos. Math. 70 (1989), 245-273. | MR | JFM

[32] Shahidi, F.: A proof of Langlands' conjecture on Plancherel measures; complementary series for $p$-adic groups. Ann. Math. (2) 132 (1990), 273-330. | DOI | MR | JFM

[33] Wilton, J. R.: A note on Ramanujan's arithmetical function $\tau(n)$. Proc. Camb. Philos. Soc. 25 (1929), 121-129 \99999JFM99999 55.0709.02. | DOI | MR

[34] Wu, J.: Power sums of Hecke eigenvalues and application. Acta Arith. 137 (2009), 333-344. | DOI | MR | JFM

Cité par Sources :