Keywords: circle method; cusp form; Fourier coefficient
@article{10_21136_CMJ_2022_0329_21,
author = {Hua, Guodong},
title = {A quadratic form with prime variables associated with {Hecke} eigenvalues of a cusp form},
journal = {Czechoslovak Mathematical Journal},
pages = {1047--1054},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0329-21},
mrnumber = {4517594},
zbl = {07655781},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0329-21/}
}
TY - JOUR AU - Hua, Guodong TI - A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1047 EP - 1054 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0329-21/ DO - 10.21136/CMJ.2022.0329-21 LA - en ID - 10_21136_CMJ_2022_0329_21 ER -
%0 Journal Article %A Hua, Guodong %T A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form %J Czechoslovak Mathematical Journal %D 2022 %P 1047-1054 %V 72 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0329-21/ %R 10.21136/CMJ.2022.0329-21 %G en %F 10_21136_CMJ_2022_0329_21
Hua, Guodong. A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1047-1054. doi: 10.21136/CMJ.2022.0329-21
[1] Calderón, C., Velasco, M. J. de: On divisors of a quadratic form. Bol. Soc. Bras. Mat., Nova Sér. 31 (2000), 81-91. | DOI | MR | JFM
[2] Chamizo, F., Iwaniec, H.: On the sphere problem. Rev. Mat. Iberoam. 11 (1995), 417-429. | DOI | MR | JFM
[3] Chen, J.: Improvement of asymptotic formulas for the number of lattice points in a region of three dimensions. II. Sci. Sin. 12 (1963), 751-764. | MR | JFM
[4] Deligne, P.: La conjecture de Weil. I. Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. | DOI | MR | JFM
[5] Friedlander, J. B., Iwaniec, H.: Hyperbolic prime number theorem. Acta Math. 202 (2009), 1-19. | DOI | MR | JFM
[6] Guo, R., Zhai, W.: Some problems about the ternary quadratic form $m_{1}^{2}+m_{2}^{2}+m_{3}^{2}$. Acta Arith. 156 (2012), 101-121. | DOI | MR | JFM
[7] Heath-Brown, D. R.: Lattice points in the sphere. Number Theory in Progress. Vol. 2 de Gruyter, Berlin (1999), 883-892. | MR | JFM
[8] Hu, G., Jiang, Y., Lü, G.: The Fourier coefficients of $\Theta$-series in arithmetic progressions. Mathematika 66 (2020), 39-55. | DOI | MR | JFM
[9] Hu, G., Lü, G.: Sums of higher divisor functions. J. Number Theory 220 (2021), 61-74. | DOI | MR | JFM
[10] Hu, L., Yang, L.: Sums of the triple divisor function over values of a quaternary quadratic form. Acta Arith. 183 (2018), 63-85. | DOI | MR | JFM
[11] Hua, L.-K.: On Waring's problem. Q. J. Math., Oxf. Ser. 9 (1938), 199-202. | DOI | JFM
[12] Ren, X.: On exponential sums over primes and application in Waring-Goldbach problem. Sci. China, Ser. A 48 (2005), 785-797. | DOI | MR | JFM
[13] Sun, Q., Zhang, D.: Sums of the triple divisor function over values of a ternary quadratic form. J. Number Theory 168 (2016), 215-246. | DOI | MR | JFM
[14] Vaughan, R. C.: The Hardy-Littlewood Method. Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). | DOI | MR | JFM
[15] Vinogradov, I. M.: On the number of integer points in a sphere. Izv. Akad. Nauk SSSR, Ser. Mat. 27 (1963), 957-968 Russian. | MR | JFM
[16] Zhang, D., Wang, Y.: Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form. J. Number Theory 176 (2017), 211-225. | DOI | MR | JFM
[17] Zhao, L.: The sum of divisors of a quadratic form. Acta Arith. 163 (2014), 161-177. | DOI | MR | JFM
Cité par Sources :