A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1047-1054
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $f$ be a normalized primitive holomorphic cusp form of even integral weight $k$ for the full modular group ${\rm SL}(2,\mathbb {Z})$, and denote its $n$th Fourier coefficient by $\lambda _{f}(n)$. We consider the hybrid problem of quadratic forms with prime variables and Hecke eigenvalues of normalized primitive holomorphic cusp forms, which generalizes the result of D. Y. Zhang, Y. N. Wang (2017).
Let $f$ be a normalized primitive holomorphic cusp form of even integral weight $k$ for the full modular group ${\rm SL}(2,\mathbb {Z})$, and denote its $n$th Fourier coefficient by $\lambda _{f}(n)$. We consider the hybrid problem of quadratic forms with prime variables and Hecke eigenvalues of normalized primitive holomorphic cusp forms, which generalizes the result of D. Y. Zhang, Y. N. Wang (2017).
DOI : 10.21136/CMJ.2022.0329-21
Classification : 11F30, 11F41, 11N37
Keywords: circle method; cusp form; Fourier coefficient
@article{10_21136_CMJ_2022_0329_21,
     author = {Hua, Guodong},
     title = {A quadratic form with prime variables associated with {Hecke} eigenvalues of a cusp form},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1047--1054},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0329-21},
     mrnumber = {4517594},
     zbl = {07655781},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0329-21/}
}
TY  - JOUR
AU  - Hua, Guodong
TI  - A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1047
EP  - 1054
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0329-21/
DO  - 10.21136/CMJ.2022.0329-21
LA  - en
ID  - 10_21136_CMJ_2022_0329_21
ER  - 
%0 Journal Article
%A Hua, Guodong
%T A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form
%J Czechoslovak Mathematical Journal
%D 2022
%P 1047-1054
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0329-21/
%R 10.21136/CMJ.2022.0329-21
%G en
%F 10_21136_CMJ_2022_0329_21
Hua, Guodong. A quadratic form with prime variables associated with Hecke eigenvalues of a cusp form. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1047-1054. doi: 10.21136/CMJ.2022.0329-21

[1] Calderón, C., Velasco, M. J. de: On divisors of a quadratic form. Bol. Soc. Bras. Mat., Nova Sér. 31 (2000), 81-91. | DOI | MR | JFM

[2] Chamizo, F., Iwaniec, H.: On the sphere problem. Rev. Mat. Iberoam. 11 (1995), 417-429. | DOI | MR | JFM

[3] Chen, J.: Improvement of asymptotic formulas for the number of lattice points in a region of three dimensions. II. Sci. Sin. 12 (1963), 751-764. | MR | JFM

[4] Deligne, P.: La conjecture de Weil. I. Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. | DOI | MR | JFM

[5] Friedlander, J. B., Iwaniec, H.: Hyperbolic prime number theorem. Acta Math. 202 (2009), 1-19. | DOI | MR | JFM

[6] Guo, R., Zhai, W.: Some problems about the ternary quadratic form $m_{1}^{2}+m_{2}^{2}+m_{3}^{2}$. Acta Arith. 156 (2012), 101-121. | DOI | MR | JFM

[7] Heath-Brown, D. R.: Lattice points in the sphere. Number Theory in Progress. Vol. 2 de Gruyter, Berlin (1999), 883-892. | MR | JFM

[8] Hu, G., Jiang, Y., Lü, G.: The Fourier coefficients of $\Theta$-series in arithmetic progressions. Mathematika 66 (2020), 39-55. | DOI | MR | JFM

[9] Hu, G., Lü, G.: Sums of higher divisor functions. J. Number Theory 220 (2021), 61-74. | DOI | MR | JFM

[10] Hu, L., Yang, L.: Sums of the triple divisor function over values of a quaternary quadratic form. Acta Arith. 183 (2018), 63-85. | DOI | MR | JFM

[11] Hua, L.-K.: On Waring's problem. Q. J. Math., Oxf. Ser. 9 (1938), 199-202. | DOI | JFM

[12] Ren, X.: On exponential sums over primes and application in Waring-Goldbach problem. Sci. China, Ser. A 48 (2005), 785-797. | DOI | MR | JFM

[13] Sun, Q., Zhang, D.: Sums of the triple divisor function over values of a ternary quadratic form. J. Number Theory 168 (2016), 215-246. | DOI | MR | JFM

[14] Vaughan, R. C.: The Hardy-Littlewood Method. Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). | DOI | MR | JFM

[15] Vinogradov, I. M.: On the number of integer points in a sphere. Izv. Akad. Nauk SSSR, Ser. Mat. 27 (1963), 957-968 Russian. | MR | JFM

[16] Zhang, D., Wang, Y.: Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form. J. Number Theory 176 (2017), 211-225. | DOI | MR | JFM

[17] Zhao, L.: The sum of divisors of a quadratic form. Acta Arith. 163 (2014), 161-177. | DOI | MR | JFM

Cité par Sources :