Isomorphisms between graded Frobenius algebras constructed from twisted superpotentials
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1029-1044
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In order to distinguish the connected graded Frobenius algebras determined by different twisted superpotentials, we introduce the nondegeneracy of twisted superpotentials. We give the sufficient and necessary condition for connected graded Frobenius algebras determined by two nondegenerate twisted superpotentials to be isomorphic. As an application, we classify the connected $\mathbb Z$-graded Frobenius algebra of length 3, whose dimension of the degree 1 is 2.
In order to distinguish the connected graded Frobenius algebras determined by different twisted superpotentials, we introduce the nondegeneracy of twisted superpotentials. We give the sufficient and necessary condition for connected graded Frobenius algebras determined by two nondegenerate twisted superpotentials to be isomorphic. As an application, we classify the connected $\mathbb Z$-graded Frobenius algebra of length 3, whose dimension of the degree 1 is 2.
DOI : 10.21136/CMJ.2022.0315-21
Classification : 16W50, 16W55
Keywords: graded Frobenius algebra; coalgebra; twisted superpotential
@article{10_21136_CMJ_2022_0315_21,
     author = {Xia, Xuejun and Li, Libin},
     title = {Isomorphisms between graded {Frobenius} algebras constructed from twisted superpotentials},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1029--1044},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0315-21},
     mrnumber = {4517592},
     zbl = {07655779},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0315-21/}
}
TY  - JOUR
AU  - Xia, Xuejun
AU  - Li, Libin
TI  - Isomorphisms between graded Frobenius algebras constructed from twisted superpotentials
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1029
EP  - 1044
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0315-21/
DO  - 10.21136/CMJ.2022.0315-21
LA  - en
ID  - 10_21136_CMJ_2022_0315_21
ER  - 
%0 Journal Article
%A Xia, Xuejun
%A Li, Libin
%T Isomorphisms between graded Frobenius algebras constructed from twisted superpotentials
%J Czechoslovak Mathematical Journal
%D 2022
%P 1029-1044
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0315-21/
%R 10.21136/CMJ.2022.0315-21
%G en
%F 10_21136_CMJ_2022_0315_21
Xia, Xuejun; Li, Libin. Isomorphisms between graded Frobenius algebras constructed from twisted superpotentials. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1029-1044. doi: 10.21136/CMJ.2022.0315-21

[1] Dăscălescu, S., Năstăsescu, C., Năstăsescu, L.: Frobenius algebras of corepresentations and group-graded vector spaces. J. Algebra 406 (2014), 226-250. | DOI | MR | JFM

[2] He, J.-W., Xia, X.-J.: Constructions of graded Frobenius algebras. J. Algebra Appl. 19 (2020), Article ID 2050081, 14 pages. | DOI | MR | JFM

[3] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). | DOI | MR | JFM

[4] Murray, W.: Nakayama automorphisms of Frobenius algebra. J. Algebra 269 (2003), 599-609. | DOI | MR | JFM

[5] Nakayama, T.: On Frobeniusean algebras. I. Ann. Math. (2) 40 (1939), 611-633 \99999JFM99999 65.0097.04. | DOI | MR

[6] Nakayama, T.: On Frobeniusean algebras. II. Ann. Math. (2) 42 (1941), 1-21 \99999JFM99999 67.0092.04. | DOI | MR

[7] Smith, S. P.: Some finite dimensional algebras related elliptic curves. Representation Theory of Algebras and Related Topics CMS Conference Proceedings. AMS, Providence (1996), 315-348. | MR | JFM

[8] Wakamatsu, T.: On graded Frobenius algebra. J. Algebra 269 (2003), 377-395. | DOI | MR | JFM

Cité par Sources :