Classification of ideals of $8$-dimensional Radford Hopf algebra
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1019-1028
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $H_{m,n}$ be the $mn^2$-dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of $8$-dimensional Radford Hopf algebra $H_{2,2}$ by generators.
Let $H_{m,n}$ be the $mn^2$-dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of $8$-dimensional Radford Hopf algebra $H_{2,2}$ by generators.
DOI : 10.21136/CMJ.2022.0313-21
Classification : 16D25, 20G42
Keywords: ideal; Radford Hopf algebra; principal ideal ring
@article{10_21136_CMJ_2022_0313_21,
     author = {Wang, Yu},
     title = {Classification of ideals of $8$-dimensional {Radford} {Hopf} algebra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1019--1028},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0313-21},
     mrnumber = {4517591},
     zbl = {07655778},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0313-21/}
}
TY  - JOUR
AU  - Wang, Yu
TI  - Classification of ideals of $8$-dimensional Radford Hopf algebra
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1019
EP  - 1028
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0313-21/
DO  - 10.21136/CMJ.2022.0313-21
LA  - en
ID  - 10_21136_CMJ_2022_0313_21
ER  - 
%0 Journal Article
%A Wang, Yu
%T Classification of ideals of $8$-dimensional Radford Hopf algebra
%J Czechoslovak Mathematical Journal
%D 2022
%P 1019-1028
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0313-21/
%R 10.21136/CMJ.2022.0313-21
%G en
%F 10_21136_CMJ_2022_0313_21
Wang, Yu. Classification of ideals of $8$-dimensional Radford Hopf algebra. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1019-1028. doi: 10.21136/CMJ.2022.0313-21

[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM

[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM

[3] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). | DOI | MR | JFM

[4] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics 82. American Mathematical Society, Providence (1993). | DOI | MR | JFM

[5] Radford, D. E.: On the coradical of a finite-dimensional Hopf algebra. Proc. Am. Math. Soc. 53 (1975), 9-15. | DOI | MR | JFM

[6] Wang, Z., Li, L., Zhang, Y.: Green rings of pointed rank one Hopf algebras of nilpotent type. Algebr. Represent. Theory 17 (2014), 1901-1924. | DOI | MR | JFM

[7] Wang, Z., Li, L., Zhang, Y.: Green rings of pointed rank one Hopf algebras of non-nilpotent type. J. Algebra 449 (2016), 108-137. | DOI | MR | JFM

[8] Wang, Y., Zheng, Y., Li, L.: On the ideals of the Radford Hopf algebras. Commun. Algebra 49 (2021), 4109-4122. | DOI | MR | JFM

Cité par Sources :