Keywords: ideal; Radford Hopf algebra; principal ideal ring
@article{10_21136_CMJ_2022_0313_21,
author = {Wang, Yu},
title = {Classification of ideals of $8$-dimensional {Radford} {Hopf} algebra},
journal = {Czechoslovak Mathematical Journal},
pages = {1019--1028},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0313-21},
mrnumber = {4517591},
zbl = {07655778},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0313-21/}
}
TY - JOUR AU - Wang, Yu TI - Classification of ideals of $8$-dimensional Radford Hopf algebra JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1019 EP - 1028 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0313-21/ DO - 10.21136/CMJ.2022.0313-21 LA - en ID - 10_21136_CMJ_2022_0313_21 ER -
Wang, Yu. Classification of ideals of $8$-dimensional Radford Hopf algebra. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1019-1028. doi: 10.21136/CMJ.2022.0313-21
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM
[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM
[3] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). | DOI | MR | JFM
[4] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics 82. American Mathematical Society, Providence (1993). | DOI | MR | JFM
[5] Radford, D. E.: On the coradical of a finite-dimensional Hopf algebra. Proc. Am. Math. Soc. 53 (1975), 9-15. | DOI | MR | JFM
[6] Wang, Z., Li, L., Zhang, Y.: Green rings of pointed rank one Hopf algebras of nilpotent type. Algebr. Represent. Theory 17 (2014), 1901-1924. | DOI | MR | JFM
[7] Wang, Z., Li, L., Zhang, Y.: Green rings of pointed rank one Hopf algebras of non-nilpotent type. J. Algebra 449 (2016), 108-137. | DOI | MR | JFM
[8] Wang, Y., Zheng, Y., Li, L.: On the ideals of the Radford Hopf algebras. Commun. Algebra 49 (2021), 4109-4122. | DOI | MR | JFM
Cité par Sources :