Maximum bipartite subgraphs in $H$-free graphs
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 621-635
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Given a graph $G$, let $f(G)$ denote the maximum number of edges in a bipartite subgraph of $G$. Given a fixed graph $H$ and a positive integer $m$, let $f(m,H)$ denote the minimum possible cardinality of $f(G)$, as $G$ ranges over all graphs on $m$ edges that contain no copy of $H$. In this paper we prove that $f(m,\theta _{k,s})\geq \tfrac 12 m +\Omega (m^{(2k+1)/(2k+2)})$, which extends the results of N. Alon, M. Krivelevich, B. Sudakov. Write $K'_{k}$ and $K'_{t,s}$ for the subdivisions of $K_k$ and $K_{t,s}$. We show that $f(m,K'_{k})\geq \tfrac 12 m +\Omega (m^{(5k-8)/(6k-10)})$ and $f(m,K'_{t,s})\geq \tfrac 12 m +\Omega (m^{(5t-1)/(6t-2)})$, improving a result of Q. Zeng, J. Hou. We also give lower bounds on wheel-free graphs. All of these contribute to a conjecture of N. Alon, B. Bollobás, M. Krivelevich, B. Sudakov (2003).
DOI :
10.21136/CMJ.2022.0302-20
Classification :
05C35, 05C70
Keywords: bipartite subgraph; $H$-free; partition
Keywords: bipartite subgraph; $H$-free; partition
@article{10_21136_CMJ_2022_0302_20,
author = {Lin, Jing},
title = {Maximum bipartite subgraphs in $H$-free graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {621--635},
publisher = {mathdoc},
volume = {72},
number = {3},
year = {2022},
doi = {10.21136/CMJ.2022.0302-20},
mrnumber = {4467931},
zbl = {07584091},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0302-20/}
}
TY - JOUR AU - Lin, Jing TI - Maximum bipartite subgraphs in $H$-free graphs JO - Czechoslovak Mathematical Journal PY - 2022 SP - 621 EP - 635 VL - 72 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0302-20/ DO - 10.21136/CMJ.2022.0302-20 LA - en ID - 10_21136_CMJ_2022_0302_20 ER -
Lin, Jing. Maximum bipartite subgraphs in $H$-free graphs. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 621-635. doi: 10.21136/CMJ.2022.0302-20
Cité par Sources :