Maximum bipartite subgraphs in $H$-free graphs
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 621-635.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given a graph $G$, let $f(G)$ denote the maximum number of edges in a bipartite subgraph of $G$. Given a fixed graph $H$ and a positive integer $m$, let $f(m,H)$ denote the minimum possible cardinality of $f(G)$, as $G$ ranges over all graphs on $m$ edges that contain no copy of $H$. In this paper we prove that $f(m,\theta _{k,s})\geq \tfrac 12 m +\Omega (m^{(2k+1)/(2k+2)})$, which extends the results of N. Alon, M. Krivelevich, B. Sudakov. Write $K'_{k}$ and $K'_{t,s}$ for the subdivisions of $K_k$ and $K_{t,s}$. We show that $f(m,K'_{k})\geq \tfrac 12 m +\Omega (m^{(5k-8)/(6k-10)})$ and $f(m,K'_{t,s})\geq \tfrac 12 m +\Omega (m^{(5t-1)/(6t-2)})$, improving a result of Q. Zeng, J. Hou. We also give lower bounds on wheel-free graphs. All of these contribute to a conjecture of N. Alon, B. Bollobás, M. Krivelevich, B. Sudakov (2003).
DOI : 10.21136/CMJ.2022.0302-20
Classification : 05C35, 05C70
Keywords: bipartite subgraph; $H$-free; partition
@article{10_21136_CMJ_2022_0302_20,
     author = {Lin, Jing},
     title = {Maximum bipartite subgraphs in $H$-free graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {621--635},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2022},
     doi = {10.21136/CMJ.2022.0302-20},
     mrnumber = {4467931},
     zbl = {07584091},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0302-20/}
}
TY  - JOUR
AU  - Lin, Jing
TI  - Maximum bipartite subgraphs in $H$-free graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 621
EP  - 635
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0302-20/
DO  - 10.21136/CMJ.2022.0302-20
LA  - en
ID  - 10_21136_CMJ_2022_0302_20
ER  - 
%0 Journal Article
%A Lin, Jing
%T Maximum bipartite subgraphs in $H$-free graphs
%J Czechoslovak Mathematical Journal
%D 2022
%P 621-635
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0302-20/
%R 10.21136/CMJ.2022.0302-20
%G en
%F 10_21136_CMJ_2022_0302_20
Lin, Jing. Maximum bipartite subgraphs in $H$-free graphs. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 621-635. doi : 10.21136/CMJ.2022.0302-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0302-20/

Cité par Sources :