Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1003-1017
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We give a quantitative characterization of the pairs of weights $(w,v)$ for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak $(p,p)$ type inequality for $1\leq p\infty $. More precisely, given any measurable set $E_0$, the estimate $$ w ( \{x\in \mathbb {R}^n\colon M^{+,d}(\mathcal {X}_{E_0})(x)>t \})\leq \frac {C[(w,v)]_{A_p^{+,d}(\mathcal {R})}^p}{t^p}v(E_0) $$ holds if and only if the pair $(w,v)$ belongs to $A_p^{+,d}(\mathcal {R})$, that is, $$ \frac {|E|}{|Q|}\leq [(w,v)]_{A_p^{+,d}(\mathcal {R})} \Bigl (\frac {v(E)}{w(Q)}\Bigr )^{ 1/p} $$ for every dyadic cube $Q$ and every measurable set $E\subset Q^+$. The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the non-dyadic case in $\mathbb {R}^2$ by following the main ideas in L. Forzani, F. J. Martín-Reyes, S. Ombrosi (2011).
DOI :
10.21136/CMJ.2022.0296-21
Classification :
28B99, 42B25
Keywords: restricted weak type; one-sided maximal operator
Keywords: restricted weak type; one-sided maximal operator
@article{10_21136_CMJ_2022_0296_21,
author = {Berra, Fabio},
title = {Restricted weak type inequalities for the one-sided {Hardy-Littlewood} maximal operator in higher dimensions},
journal = {Czechoslovak Mathematical Journal},
pages = {1003--1017},
publisher = {mathdoc},
volume = {72},
number = {4},
year = {2022},
doi = {10.21136/CMJ.2022.0296-21},
mrnumber = {4517590},
zbl = {07655777},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0296-21/}
}
TY - JOUR AU - Berra, Fabio TI - Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1003 EP - 1017 VL - 72 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0296-21/ DO - 10.21136/CMJ.2022.0296-21 LA - en ID - 10_21136_CMJ_2022_0296_21 ER -
%0 Journal Article %A Berra, Fabio %T Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions %J Czechoslovak Mathematical Journal %D 2022 %P 1003-1017 %V 72 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0296-21/ %R 10.21136/CMJ.2022.0296-21 %G en %F 10_21136_CMJ_2022_0296_21
Berra, Fabio. Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1003-1017. doi: 10.21136/CMJ.2022.0296-21
Cité par Sources :