Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1003-1017
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a quantitative characterization of the pairs of weights $(w,v)$ for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak $(p,p)$ type inequality for $1\leq p\infty $. More precisely, given any measurable set $E_0$, the estimate $$ w ( \{x\in \mathbb {R}^n\colon M^{+,d}(\mathcal {X}_{E_0})(x)>t \})\leq \frac {C[(w,v)]_{A_p^{+,d}(\mathcal {R})}^p}{t^p}v(E_0) $$ holds if and only if the pair $(w,v)$ belongs to $A_p^{+,d}(\mathcal {R})$, that is, $$ \frac {|E|}{|Q|}\leq [(w,v)]_{A_p^{+,d}(\mathcal {R})} \Bigl (\frac {v(E)}{w(Q)}\Bigr )^{ 1/p} $$ for every dyadic cube $Q$ and every measurable set $E\subset Q^+$. The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the non-dyadic case in $\mathbb {R}^2$ by following the main ideas in L. Forzani, F. J. Martín-Reyes, S. Ombrosi (2011).
We give a quantitative characterization of the pairs of weights $(w,v)$ for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak $(p,p)$ type inequality for $1\leq p\infty $. More precisely, given any measurable set $E_0$, the estimate $$ w ( \{x\in \mathbb {R}^n\colon M^{+,d}(\mathcal {X}_{E_0})(x)>t \})\leq \frac {C[(w,v)]_{A_p^{+,d}(\mathcal {R})}^p}{t^p}v(E_0) $$ holds if and only if the pair $(w,v)$ belongs to $A_p^{+,d}(\mathcal {R})$, that is, $$ \frac {|E|}{|Q|}\leq [(w,v)]_{A_p^{+,d}(\mathcal {R})} \Bigl (\frac {v(E)}{w(Q)}\Bigr )^{ 1/p} $$ for every dyadic cube $Q$ and every measurable set $E\subset Q^+$. The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the non-dyadic case in $\mathbb {R}^2$ by following the main ideas in L. Forzani, F. J. Martín-Reyes, S. Ombrosi (2011).
DOI : 10.21136/CMJ.2022.0296-21
Classification : 28B99, 42B25
Keywords: restricted weak type; one-sided maximal operator
@article{10_21136_CMJ_2022_0296_21,
     author = {Berra, Fabio},
     title = {Restricted weak type inequalities for the one-sided {Hardy-Littlewood} maximal operator in higher dimensions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1003--1017},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0296-21},
     mrnumber = {4517590},
     zbl = {07655777},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0296-21/}
}
TY  - JOUR
AU  - Berra, Fabio
TI  - Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1003
EP  - 1017
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0296-21/
DO  - 10.21136/CMJ.2022.0296-21
LA  - en
ID  - 10_21136_CMJ_2022_0296_21
ER  - 
%0 Journal Article
%A Berra, Fabio
%T Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions
%J Czechoslovak Mathematical Journal
%D 2022
%P 1003-1017
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0296-21/
%R 10.21136/CMJ.2022.0296-21
%G en
%F 10_21136_CMJ_2022_0296_21
Berra, Fabio. Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1003-1017. doi: 10.21136/CMJ.2022.0296-21

[1] Forzani, L., Martín-Reyes, F. J., Ombrosi, S.: Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function. Trans. Am. Math. Soc. 363 (2011), 1699-1719. | DOI | MR | JFM

[2] Kinnunen, J., Saari, O.: On weights satisfying parabolic Muckenhoupt conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 131 (2016), 289-299. | DOI | MR | JFM

[3] Kinnunen, J., Saari, O.: Parabolic weighted norm inequalities and partial differential equations. Anal. PDE 9 (2016), 1711-1736. | DOI | MR | JFM

[4] Lerner, A. K., Ombrosi, S.: A boundedness criterion for general maximal operators. Publ. Mat., Barc. 54 (2010), 53-71. | DOI | MR | JFM

[5] Martín-Reyes, F. J.: New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Proc. Am. Math. Soc. 117 (1993), 691-698. | DOI | MR | JFM

[6] Martín-Reyes, F. J., Torre, A. de la: Two weight norm inequalities for fractional one-sided maximal operators. Proc. Am. Math. Soc. 117 (1993), 483-489. | DOI | MR | JFM

[7] Martín-Reyes, F. J., Salvador, P. Ortega, Torre, A. de la: Weighted inequalities for one- sided maximal functions. Trans. Am. Math. Soc. 319 (1990), 517-534. | DOI | MR | JFM

[8] Ombrosi, S.: Weak weighted inequalities for a dyadic one-sided maximal function in ${\mathbb R}^n$. Proc. Am. Math. Soc. 133 (2005), 1769-1775. | DOI | MR | JFM

[9] Salvador, P. Ortega: Weighted inequalities for one-sided maximal functions in Orlicz spaces. Stud. Math. 131 (1998), 101-114. | DOI | MR | JFM

[10] Sawyer, E.: Weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Trans. Am. Math. Soc. 297 (1986), 53-61. | DOI | MR | JFM

Cité par Sources :