Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1003-1017.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give a quantitative characterization of the pairs of weights $(w,v)$ for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak $(p,p)$ type inequality for $1\leq p\infty $. More precisely, given any measurable set $E_0$, the estimate $$ w ( \{x\in \mathbb {R}^n\colon M^{+,d}(\mathcal {X}_{E_0})(x)>t \})\leq \frac {C[(w,v)]_{A_p^{+,d}(\mathcal {R})}^p}{t^p}v(E_0) $$ holds if and only if the pair $(w,v)$ belongs to $A_p^{+,d}(\mathcal {R})$, that is, $$ \frac {|E|}{|Q|}\leq [(w,v)]_{A_p^{+,d}(\mathcal {R})} \Bigl (\frac {v(E)}{w(Q)}\Bigr )^{ 1/p} $$ for every dyadic cube $Q$ and every measurable set $E\subset Q^+$. The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the non-dyadic case in $\mathbb {R}^2$ by following the main ideas in L. Forzani, F. J. Martín-Reyes, S. Ombrosi (2011).
DOI : 10.21136/CMJ.2022.0296-21
Classification : 28B99, 42B25
Keywords: restricted weak type; one-sided maximal operator
@article{10_21136_CMJ_2022_0296_21,
     author = {Berra, Fabio},
     title = {Restricted weak type inequalities for the one-sided {Hardy-Littlewood} maximal operator in higher dimensions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1003--1017},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2022},
     doi = {10.21136/CMJ.2022.0296-21},
     mrnumber = {4517590},
     zbl = {07655777},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0296-21/}
}
TY  - JOUR
AU  - Berra, Fabio
TI  - Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1003
EP  - 1017
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0296-21/
DO  - 10.21136/CMJ.2022.0296-21
LA  - en
ID  - 10_21136_CMJ_2022_0296_21
ER  - 
%0 Journal Article
%A Berra, Fabio
%T Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions
%J Czechoslovak Mathematical Journal
%D 2022
%P 1003-1017
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0296-21/
%R 10.21136/CMJ.2022.0296-21
%G en
%F 10_21136_CMJ_2022_0296_21
Berra, Fabio. Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1003-1017. doi : 10.21136/CMJ.2022.0296-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0296-21/

Cité par Sources :