Keywords: prime counting function; discretization; Riemann hypothesis; harmonic number; indecomposable permutation; asymptotic convexity
@article{10_21136_CMJ_2022_0280_21,
author = {Alkan, Emre},
title = {Discretization of prime counting functions, convexity and the {Riemann} hypothesis},
journal = {Czechoslovak Mathematical Journal},
pages = {15--48},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0280-21},
mrnumber = {4541088},
zbl = {07655754},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0280-21/}
}
TY - JOUR AU - Alkan, Emre TI - Discretization of prime counting functions, convexity and the Riemann hypothesis JO - Czechoslovak Mathematical Journal PY - 2023 SP - 15 EP - 48 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0280-21/ DO - 10.21136/CMJ.2022.0280-21 LA - en ID - 10_21136_CMJ_2022_0280_21 ER -
%0 Journal Article %A Alkan, Emre %T Discretization of prime counting functions, convexity and the Riemann hypothesis %J Czechoslovak Mathematical Journal %D 2023 %P 15-48 %V 73 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0280-21/ %R 10.21136/CMJ.2022.0280-21 %G en %F 10_21136_CMJ_2022_0280_21
Alkan, Emre. Discretization of prime counting functions, convexity and the Riemann hypothesis. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 15-48. doi: 10.21136/CMJ.2022.0280-21
[1] Alkan, E.: On Dirichlet $L$-functions with periodic coefficients and Eisenstein series. Monatsh. Math. 163 (2011), 249-280. | DOI | MR | JFM
[2] Alkan, E.: Distribution of averages of Ramanujan sums. Ramanujan J. 29 (2012), 385-408. | DOI | MR | JFM
[3] Alkan, E.: Ramanujan sums and the Burgess zeta function. Int. J. Number Theory 8 (2012), 2069-2092. | DOI | MR | JFM
[4] Alkan, E.: Biased behavior of weighted Mertens sums. Int. J. Number Theory 16 (2020), 547-577. | DOI | MR | JFM
[5] Alkan, E.: Inequalities between sums over prime numbers in progressions. Res. Number Theory 6 (2020), Article ID 36, 29 pages. | DOI | MR | JFM
[6] Alkan, E.: Variations on criteria of Pólya and Turán for the Riemann hypothesis. J. Number Theory 225 (2021), 90-124. | DOI | MR | JFM
[7] Alkan, E., Zaharescu, A.: $B$-free numbers in short arithmetic progressions. J. Number Theory 113 (2005), 226-243. | DOI | MR | JFM
[8] Benjamin, A. T., Gaebler, D., Gaebler, R.: A combinatorial approach to hyperharmonic numbers. Integers 3 (2003), Article ID A15, 9 pages. | MR | JFM
[9] Berndt, B. C.: Ramanujan's Notebooks. Part IV. Springer, New York (1994). | DOI | MR | JFM
[10] Cobeli, C., Panaitopol, L., Vâjâitu, M., Zaharescu, A.: Some asymptotic formulas involving primes in arithmetic progressions. Comment. Math. Univ. St. Pauli 53 (2004), 23-35. | MR | JFM
[11] Comtet, L.: Sur les coefficients de l'inverse de la série formelle $\sum n!t^n$. C. R. Acad. Sci., Paris, Sér. A 275 (1972), 569-572 French. | MR | JFM
[12] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel, Dordrecht (1974). | DOI | MR | JFM
[13] Conway, J. H., Guy, R. K.: The Book of Numbers. Springer, Berlin (1996). | DOI | MR | JFM
[14] Davenport, H.: Multiplicative Number Theory. Graduate Texts in Mathematics 74. Springer, New York (2000). | DOI | MR | JFM
[15] Camargo, A. P. de, Martin, P. A.: Constant components of the Mertens function and its connections with Tschebyschef's Theory for counting prime numbers. (to appear) in Bull. Braz. Math. Soc. (N.S.). | DOI | MR
[16] Ford, K.: Vinogradov's integral and bounds for the Riemann zeta function. Proc. Lond. Math. Soc., III. Ser. 85 (2002), 565-633. | DOI | MR | JFM
[17] Grosswald, É.: Sur l'ordre de grandeur des différences $\psi(x)-x$ et $\pi(x)-{ li} x$. C. R. Acad. Sci., Paris 260 (1965), 3813-3816 French. | MR | JFM
[18] Hassani, M.: Approximation of $\pi(x)$ by $\Psi(x)$. JIPAM, J. Inequal. Pure Appl. Math. 7 (2006), Articles ID 7, 7 pages. | MR | JFM
[19] Hassani, M.: On an inequality of Ramanujan concerning the prime counting function. Ramanujan J. 28 (2012), 435-442. | DOI | MR | JFM
[20] Hassani, M.: Generalizations of an inequality of Ramanujan concerning prime counting function. Appl. Math. E-Notes 13 (2013), 148-154. | MR | JFM
[21] Hassani, M.: Remarks on Ramanujan's inequality concerning the prime counting function. Commun. Math. 29 (2021), 473-482. | DOI | MR | JFM
[22] Ingham, A. E.: The Distribution of Prime Numbers. Cambridge Tracts in Mathematics and Mathematical Physics 30. Cambridge University Press, London (1932). | MR | JFM
[23] King, A.: Generating indecomposable permutations. Discrete Math. 306 (2006), 508-518. | DOI | MR | JFM
[24] Littlewood, J. E.: Sur la distribution des nombres premiers. C. R. Acad. Sci., Paris 158 (1914), 1869-1872 French \99999JFM99999 45.0305.01.
[25] Malliavin, P.: Sur le reste de la loi asymptotique de répartition des nombres premiers généralisés de Beurling. Acta Math. 106 (1961), 281-298 French. | DOI | MR | JFM
[26] Mincu, G., Panaitopol, L.: Properties of some functions connected to prime numbers. JIPAM, J. Inequal. Pure Appl. Math. 9 (2008), Article ID 12, 10 pages. | MR | JFM
[27] Mititica, G., Panaitopol, L.: Series involving the least and the greatest prime factor of a natural number. Math. Inequal. Appl. 13 (2010), 197-201. | DOI | MR | JFM
[28] Panaitopol, L.: Several approximations of $\pi(x)$. Math. Inequal. Appl. 2 (1999), 317-324. | DOI | MR | JFM
[29] Panaitopol, L.: A formula for $\pi(x)$ applied to a result of Koninck-Ivić. Nieuw Arch. Wiskd. 5 (2000), 55-56. | MR | JFM
[30] Panaitopol, L.: Inequalities concerning the function $\pi(x)$: Applications. Acta Arith. 94 (2000), 373-381. | DOI | MR | JFM
[31] Panaitopol, L.: Asymptotic formulas involving $\pi(x)$. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 44 (2001), 91-96. | MR | JFM
[32] Panaitopol, L.: Inequalities involving prime numbers. Math. Rep., Bucur 3(53) (2001), 251-256. | MR | JFM
[33] Panaitopol, L.: A special case of the Hardy-Littlewood conjecture. Math. Rep., Bucur 4(54) (2002), 265-268. | MR | JFM
[34] Riemann, B.: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsberichte Königlichen Preußischen Akademie der Wissenschaften Berlin (1859), 671-680 German. | DOI
[35] Schmidt, E.: Über die Anzahl der Primzahlen unter gegebener Grenze. Math. Ann. 57 (1903), 195-204 German \99999JFM99999 34.0230.02. | DOI | MR
[36] Schoenfeld, L.: Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$. II. Math. Comput. 30 (1976), 337-360. | DOI | MR | JFM
[37] Turán, P.: On the remainder-term of the prime-number formula. II. Acta Math. Acad. Sci. Hung. 1 (1950), 155-166. | DOI | MR | JFM
[38] Walfisz, A.: Weylsche Exponentialsummen in der neueren Zahlentheorie. Mathematische Forschungsberichte 15. VEB Deutscher Verlag der Wissenschaften, Berlin (1963), German. | MR | JFM
Cité par Sources :